Aare Mounika, Padakanti Sandeep Chary, Singh Mandip
College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA.
AAPS PharmSciTech. 2025 Sep 11;26(7):227. doi: 10.1208/s12249-025-03201-9.
Cannabidiol (CBD) suffers from poor aqueous solubility and extensive first-pass metabolism, which significantly limits its oral bioavailability. In our earlier work, we developed camel milk-derived exosomes (CMDE) as nanocarriers to enhance CBD bioavailability, confirmed through in vivo pharmacokinetic evaluations. In this study, we further characterized the formulation by performing an in silico physiologically based pharmacokinetic (PBPK) simulation using GastroPlus™, integrating in vitro dissolution data. The simulation demonstrated that CBD absorption improved markedly with exosomal encapsulation, achieving 97.8% compared to 13.1% for free CBD. Additionally, CBD-exosomes produced an 8.66-fold increase in maximum plasma concentration (Cmax) and a 7.15-fold increase in the area under the curve (AUC), with predominant uptake observed in the duodenum and jejunum. These computational findings closely mirrored our in vivo results, providing mechanistic insights into the enhanced oral absorption of CBD via exosomal encapsulation. Furthermore, in vitro cytotoxicity studies revealed that combining CBD-CMDE with Paclitaxel (PTX) produced synergistic effects, enabling a two-fold reduction in the required PTX dose. In MDA-MB-231 DOX RT xenograft models, the combination of CBD-CMDE and PTX reduced tumor burden by 2.5-fold relative to controls. Western blot analyses indicated significant downregulation of PI3K/AKT/mTOR pathway regulators, along with modulation of immune markers, suggesting an immune-activating component. Whole-body imaging further confirmed the in vivo targetability of CMDE. This study represents the first application of PBPK modeling, based on in vitro dissolution data, to assess the pharmacokinetics of CBD-exosomes. By integrating computational and preclinical evidence, our findings underscore the potential of exosome-based oral drug delivery systems in enhancing therapeutic efficacy.
大麻二酚(CBD)存在水溶性差和首过代谢广泛的问题,这显著限制了其口服生物利用度。在我们早期的工作中,我们开发了源自骆驼奶的外泌体(CMDE)作为纳米载体来提高CBD的生物利用度,这一点已通过体内药代动力学评估得到证实。在本研究中,我们使用GastroPlus™进行基于生理的药代动力学(PBPK)模拟,并结合体外溶出数据,进一步对该制剂进行了表征。模拟结果表明,外泌体包封显著改善了CBD的吸收,包封后的CBD吸收率达到97.8%,而游离CBD的吸收率为13.1%。此外,CBD-外泌体使最大血浆浓度(Cmax)增加了8.66倍,曲线下面积(AUC)增加了7.15倍,在十二指肠和空肠中观察到主要的摄取。这些计算结果与我们的体内结果密切相符,为通过外泌体包封增强CBD口服吸收提供了机制性见解。此外,体外细胞毒性研究表明,将CBD-CMDE与紫杉醇(PTX)联合使用产生了协同作用,使所需的PTX剂量减少了两倍。在MDA-MB-231 DOX RT异种移植模型中,CBD-CMDE与PTX的联合使用使肿瘤负担相对于对照组降低了2.5倍。蛋白质印迹分析表明PI3K/AKT/mTOR信号通路调节剂显著下调,同时免疫标志物也发生了调节,提示存在免疫激活成分。全身成像进一步证实了CMDE在体内的靶向性。本研究代表了基于体外溶出数据的PBPK建模首次应用于评估CBD-外泌体的药代动力学。通过整合计算和临床前证据,我们的研究结果强调了基于外泌体的口服给药系统在提高治疗效果方面的潜力。