Kumari Reshma, Pal Nila, Kaur Rajwinder, Sharma Ritika, Manna Debashree, Katin Konstantin, Mondal Prakash Chandra, Milton Marilyn Daisy
Functional Organic Molecules Synthesis Laboratory, Department of Chemistry, University of Delhi Delhi-110 007 India
Department of Chemistry, Indian Institute of Technology Kanpur Uttar Pradesh-208016 India
Chem Sci. 2025 Sep 2. doi: 10.1039/d5sc03848k.
Engineering transformable electronic features in two-terminal molecular junctions is of significant interest for advancing molecular-scale electronics. We demonstrate external stimuli (acid vapor)-responsive enhanced electrical current rectification (so called diode) in phenothiazine-based (R1) vertically stacked molecular junctions (MJs) with a configuration of p-Si/R1/ITO. The fabricated junctions exhibit nearly 530% enhancement in the electrical current rectification ratio (RR) in response to acid-vapor exposure for 60 seconds. The electronic functions of the devices can be partially set back using triethylamine (a weak base) vapor. Exposure to acid vapor forms cation radicals, (R1˙)H, that bring the lowest unoccupied molecular orbital (LUMO) closer to the Fermi level ( ) of the ITO electrode in forward bias. In contrast, alignment of the highest occupied molecular orbital (HOMO) is not favorable under reverse bias conditions, which causes the emergence of the rectification ratio in the acid-exposed MJs. Electrical impedance spectra reveal a high charge transfer resistance ( ) of about 6 MΩ in pristine MJs, behaving like a resistor. However, the acid vapor facilitates an enhanced current flow at the forward bias compared to that at the reverse bias, mimicking diode functionality. The molecular junctions scrutinized for alternating current (AC) to direct current (DC) conversion using a function generator exhibit optimal diode performance at 500 Hz. Our findings demonstrate a method for high-yield device fabrication (∼86% working devices) that can be utilized for acid- and base-vapor-facilitated transformable electronic functions mimicking traditional electronics.
在两端分子结中构建可转换电子特性对于推动分子尺度电子学具有重大意义。我们展示了在基于吩噻嗪(R1)的垂直堆叠分子结(MJs)(p-Si/R1/ITO结构)中,外部刺激(酸蒸汽)响应增强的电流整流(即所谓的二极管)。制备的结在暴露于酸蒸汽60秒后,电流整流比(RR)提高了近530%。使用三乙胺(一种弱碱)蒸汽可部分恢复器件的电子功能。暴露于酸蒸汽会形成阳离子自由基(R1˙)H,在正向偏压下,它会使最低未占据分子轨道(LUMO)更接近ITO电极的费米能级( )。相比之下,在反向偏压条件下,最高占据分子轨道(HOMO)的排列不利,这导致酸暴露的MJs中出现整流比。电阻抗谱显示,原始MJs的电荷转移电阻( )约为6 MΩ,表现得像一个电阻器。然而,与反向偏压相比,酸蒸汽在正向偏压下促进了增强的电流流动,模拟了二极管功能。使用函数发生器对分子结进行交流(AC)到直流(DC)转换的研究表明,在500 Hz时二极管性能最佳。我们的研究结果展示了一种高产率器件制造方法(约86%的工作器件),可用于模拟传统电子学的酸蒸汽和碱蒸汽促进的可转换电子功能。