Suppr超能文献

促进双氯芬酸的有机成核:疏水界面相互作用驱动自组装。

Promoting organic nucleation of diclofenac: hydrophobic interfacial interactions drive self-assembly.

作者信息

Lu Hao, Wiedenbeck Eduard, Macht Moritz, Qi Daizong, Dhinojwala Ali, Zuilhof Han, Zahn Dirk, Cölfen Helmut, Bonn Mischa

机构信息

College of Materials and Textile Engineering, G60 STI Valley Industry & Innovation Institute, Jiaxing University Jiaxing Zhejiang Province 314001 China

Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany

出版信息

Chem Sci. 2025 Sep 3. doi: 10.1039/d5sc03816b.

Abstract

We compare the pH-triggered nucleation of the pharmaceutical diclofenac in bulk solution and at the air-water interface, using a combination of cryo-transmission electron microscopy, surface-specific spectroscopy and microscopy, and molecular dynamics simulations. In solution, simulation data reveal diclofenac forms dynamically ordered, liquid-like pre-nucleation clusters (PNCs), following a nonclassical nucleation pathway. At the air-water interface, nucleation occurs earlier during the titration process. The promoted nucleation is attributed to the interfacial enrichment of protons at this hydrophobic interface, elevated interfacial apparent p for diclofenac, as well as the interface-induced ordered diclofenac-water structures. While hydrophobic interactions drive the first air-diclofenac-water layer, further diclofenac molecules tend to separate from water by forming hydrogen-bonded dimers, characteristic of the crystal structure. These findings provide molecular-level insights into organic nucleation, highlighting the importance of hydrophobic interfaces in controlling the process, with potential implications for various applications in pharmaceutical and materials science.

摘要

我们结合冷冻透射电子显微镜、表面特异性光谱学和显微镜技术以及分子动力学模拟,比较了药物双氯芬酸在本体溶液和空气-水界面处的pH触发成核情况。在溶液中,模拟数据表明双氯芬酸遵循非经典成核途径,形成动态有序的、类似液体的预成核簇(PNCs)。在空气-水界面处,成核在滴定过程中更早发生。成核促进归因于该疏水界面处质子的界面富集、双氯芬酸的界面表观p升高以及界面诱导的双氯芬酸-水有序结构。虽然疏水相互作用驱动了第一层空气-双氯芬酸-水层,但进一步的双氯芬酸分子倾向于通过形成氢键二聚体与水分离,这是晶体结构的特征。这些发现为有机成核提供了分子水平的见解,突出了疏水界面在控制该过程中的重要性,对制药和材料科学中的各种应用具有潜在意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f529/12421322/8fd4d7ee79e7/d5sc03816b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验