Suppr超能文献

通过规范映射创建综合罕见病概况以推进罕见病研究。

Integrative Rare Disease Profile Creation via NormMap to Advance Rare Disease Research.

作者信息

Leadman Devon, Qu Sue, Xu Yanji, Zhu Qian

机构信息

Division of Rare Diseases Research Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, MD.

Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD.

出版信息

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:3263-3266. doi: 10.1109/bibm55620.2022.9995172. Epub 2023 Jan 2.

Abstract

Given the nature of rare diseases, lack of data and standards impedes research in rare diseases. A method to improve data interoperability is necessary to allow data reuse, integration, and exchange in rare disease. A computational package named NormMap was developed to identify rare disease related data from various types of resources in free text via semantic annotation with rare disease terms from NCATS Genetic and Rare Diseases (GARD). In this preliminary study, four different sources which include NIH funded projects, clinical trials, PubMed articles, and Reddit subreddits, were applied to generate rare disease profiles by extending and exploring NormMap. Those profiles would offer a complete view of rare diseases from different aspects, funding agencies, patient groups, scientific research, to ultimately advance rare disease research, which is demonstrated in our case study.

摘要

鉴于罕见病的特性,数据的匮乏和标准的缺失阻碍了罕见病研究。需要一种提高数据互操作性的方法,以实现罕见病数据的重复使用、整合和交换。开发了一个名为NormMap的计算包,通过使用美国国立转化医学科学研究所遗传与罕见病(GARD)的罕见病术语进行语义标注,从各种类型资源的自由文本中识别与罕见病相关的数据。在这项初步研究中,应用了包括美国国立卫生研究院资助项目、临床试验、PubMed文章和Reddit子版块在内的四个不同来源,通过扩展和探索NormMap来生成罕见病概况。这些概况将从不同方面,如资助机构、患者群体、科学研究等,提供对罕见病的全面视角,以最终推动罕见病研究,这在我们的案例研究中得到了证明。

相似文献

1
Integrative Rare Disease Profile Creation via NormMap to Advance Rare Disease Research.通过规范映射创建综合罕见病概况以推进罕见病研究。
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:3263-3266. doi: 10.1109/bibm55620.2022.9995172. Epub 2023 Jan 2.
2
Semantic Annotation of NIH Funding Data for Supporting Rare Disease Research.用于支持罕见病研究的美国国立卫生研究院资助数据的语义标注
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:3260-3262. doi: 10.1109/bibm55620.2022.9994880. Epub 2023 Jan 2.

本文引用的文献

1
Data Normalization Improves Semantic Annotation - a Case Study of Rare Disease Name Annotation.数据归一化改进语义标注——罕见病名称标注的案例研究
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2021 Dec;2021:2609-2611. doi: 10.1109/bibm52615.2021.9669475. Epub 2022 Jan 14.
2
Rare diseases, common challenges.罕见病,共同的挑战。
Nat Genet. 2022 Mar;54(3):215. doi: 10.1038/s41588-022-01037-8.
6
An overview of MetaMap: historical perspective and recent advances.MetaMap 概述:历史视角与最新进展。
J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36. doi: 10.1136/jamia.2009.002733.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验