Suppr超能文献

抗炎和抗病毒疗法对重症 COVID-19 患者中性粒细胞与淋巴细胞比值及生存结局的比较有效性:多中心回顾性研究

Comparative effectiveness of anti-inflammatory and antiviral therapies on NLR and survival outcomes in severe COVID-19: multicenter retrospective study.

作者信息

Mutair Abbas Al, Daniyal Muhammad, Alkubati Sameer A, Albaqawi Hamdan, Alrasheeday Awatif M, Alshammari Bushra, Alsaleh Kawthar, Mottershead Richard, Alyami Hanan, Alharbi Hanan F, Al-Omari Awad

机构信息

Research Center, Almoosa Specialist Hospital, Al-ahsa, Saudi Arabia.

College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia.

出版信息

PeerJ. 2025 Sep 4;13:e20003. doi: 10.7717/peerj.20003. eCollection 2025.

Abstract

BACKGROUND

The COVID-19 pandemic has highlighted the critical role of immune dysregulation and systemic inflammation in disease severity, particularly in patients with severe respiratory illness. Elevated levels of pro-inflammatory cytokines, such as IL-6, and biomarkers like the neutrophil-to-lymphocyte ratio (NLR) have been associated with worse outcomes. This study enrolled laboratory-confirmed SARS-CoV-2 patients with acute respiratory illness requiring intestive care unit (ICU) admission, including mechanical ventilation, to evaluate the effect of different treatments on NLR, neutrophil count (NC), and lymphocyte count (LC).

METHODS

A retrospective, multicenter, observational cohort study was conducted across 15 tertiary hospitals in Saudi Arabia, involving 1,490 ICU-admitted COVID-19 patients between March 1, 2020, and October 30, 2020. Data on patient demographics, comorbidities, laboratory results, and treatment outcomes were collected using the Research Electronic Data Capture (REDCap) system. The study evaluated the effect of different treatments on NLR, neutrophil count (NC), and lymphocyte count (LC).

RESULTS

This study utilized 1,490 patients in the study of whom 73.6% were male and 26.1% were female. The average age of patients was 56.2 years, with a mean NLR of 8.77 ± 8.64, showing significant systemic inflammation. Tocilizumab ( = 0.031), oseltamivir ( = 0.004), and linezolid (0.029) showed statistically significant effects on NLR. Tocilizumab demonstrated the highest mean survival time with 60.813 days, compared to linezolid (49.359 days) and ostilomavir (40.635 days). However, patients not getting linezolid or ostilomavir had longer mean survival times, suggesting potential limitations in their efficacy. Tocilizumab also showed a weak positive correlation with NC ( = 0.086,  = 0.001), further supporting its role in modulating inflammation and improving the immune system.

CONCLUSION

Among the evaluated therapies, tocilizumab and oseltamivir showed a consistent trend of lower NLR values in both survivors and non-survivors, compared to those not receiving these treatments. These findings suggest that tocilizumab and oseltamivir may offer some efficacy in modulating immune response (as measured by NLR) and potentially improving outcomes. However, due to observed weak correlations no single therapy alone appears sufficient to predict or reduce mortality, emphasizing the need for multimodal treatment strategies and further investigation into combined biomarker models.

摘要

背景

2019冠状病毒病(COVID-19)大流行凸显了免疫失调和全身炎症在疾病严重程度中的关键作用,尤其是在患有严重呼吸道疾病的患者中。促炎细胞因子(如白细胞介素-6)水平升高以及中性粒细胞与淋巴细胞比值(NLR)等生物标志物与较差的预后相关。本研究纳入了实验室确诊的急性呼吸道疾病且需要入住重症监护病房(ICU)(包括机械通气)的SARS-CoV-2患者,以评估不同治疗方法对NLR、中性粒细胞计数(NC)和淋巴细胞计数(LC)的影响。

方法

在沙特阿拉伯的15家三级医院进行了一项回顾性、多中心、观察性队列研究,纳入了2020年3月1日至2020年10月30日期间1490例入住ICU的COVID-19患者。使用研究电子数据采集(REDCap)系统收集患者人口统计学、合并症、实验室检查结果和治疗结果的数据。该研究评估了不同治疗方法对NLR、中性粒细胞计数(NC)和淋巴细胞计数(LC)的影响。

结果

本研究共纳入1490例患者,其中73.6%为男性,26.1%为女性。患者的平均年龄为56.2岁,平均NLR为8.77±8.64,显示出明显的全身炎症。托珠单抗(P=0.031)、奥司他韦(P=0.004)和利奈唑胺(P=0.029)对NLR有统计学显著影响。托珠单抗的平均生存时间最长,为60.813天,而利奈唑胺为49.359天,奥司他韦为40.635天。然而,未使用利奈唑胺或奥司他韦的患者平均生存时间更长,表明其疗效可能存在局限性。托珠单抗与NC也呈弱正相关(P=0.086,r=0.001),进一步支持了其在调节炎症和改善免疫系统方面的作用。

结论

在评估的治疗方法中,与未接受这些治疗的患者相比,托珠单抗和奥司他韦在幸存者和非幸存者中均显示出NLR值较低的一致趋势。这些发现表明,托珠单抗和奥司他韦在调节免疫反应(以NLR衡量)和潜在改善预后方面可能具有一定疗效。然而,由于观察到的相关性较弱,没有单一疗法似乎足以预测或降低死亡率,这强调了多模式治疗策略的必要性以及对联合生物标志物模型的进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b56/12422261/d4cbee117f11/peerj-13-20003-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验