Wan Xue, Chen Siyao, Ma Jingqi, Dong Chaoqun, Banerjee Hritwick, Laperrousaz Stella, Piveteau Pierre-Luc, Meng Yan, Leng Jinsong, Sorin Fabien
Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Centre for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080 People's Republic of China.
Adv Fiber Mater. 2025;7(5):1576-1589. doi: 10.1007/s42765-025-00571-4. Epub 2025 Jun 18.
Stimuli-responsive polymers offer unprecedented control over drug release in implantable delivery systems. Shape memory polymer fibers (SMPFs), with their large specific surface area and programmable properties, present promising alternatives for triggerable drug delivery. However, the existing SMPFs face limitations in resolution, architecture, scalability, and functionality. We introduce thermal drawing as a materials and processing platform to fabricate microstructured, multimaterial SMPFs that are tens of meters long, with high resolution (10 μm) and extreme aspect ratios (> 10). These novel fibers achieve highly controlled, sequential drug release over tailored time periods of 6 months. Post thermal drawing photothermal coatings enable accelerated, spatially precise drug release within 4 months and facilitate light-triggered, untethered shape recovery. The fibers' fast self-tightening capability within 40 s shows their potential as smart sutures for minimally invasive procedures that deliver drugs simultaneously. In addition, the advanced multimaterial platform facilitates the integration of optical and metallic elements within SMP systems, allowing highly integrated fibers with shape memory attributes and unprecedented functionalities. This versatile technology opens new avenues for diverse biomedical applications, including implantable drug delivery systems, smart sutures, wound dressings, stents, and functional textiles. It represents a significant advancement in precise spatio-temporal control of drug delivery and adaptive medical devices.
The online version contains supplementary material available at 10.1007/s42765-025-00571-4.
刺激响应性聚合物为植入式给药系统中的药物释放提供了前所未有的控制。形状记忆聚合物纤维(SMPF)具有大的比表面积和可编程特性,是可触发药物递送的有前景的替代品。然而,现有的SMPF在分辨率、结构、可扩展性和功能方面存在局限性。我们引入热拉伸作为一种材料和加工平台,以制造具有高分辨率(10μm)和极高长径比(>10)、长达数十米的微结构化、多材料SMPF。这些新型纤维在长达6个月的定制时间段内实现了高度可控的顺序药物释放。热拉伸后的光热涂层可在4个月内实现加速、空间精确的药物释放,并促进光触发、无束缚的形状恢复。纤维在40秒内的快速自收紧能力显示了它们作为同时递送药物的微创程序智能缝合线的潜力。此外,先进的多材料平台有助于将光学和金属元素集成到SMP系统中,从而实现具有形状记忆属性和前所未有的功能的高度集成纤维。这种通用技术为多种生物医学应用开辟了新途径,包括植入式药物递送系统、智能缝合线、伤口敷料、支架和功能性纺织品。它代表了药物递送和自适应医疗设备精确时空控制方面的重大进展。
在线版本包含可在10.1007/s42765-025-00571-4获取的补充材料。