Naja Khaled, Alhadidi Sara H, Elsayed Hadil, Al-Khayat Jassim Abdulla A, Sadooni Fadhil, Al-Kuwari Hamad Al Saad, Al Disi Zulfa Ali
Environmental Science Centre, Qatar University, P.O. Box 2713, Doha, Qatar.
Biomedical Research Centre, QU health, Qatar University, Doha, Qatar.
Biochem Biophys Rep. 2025 May 27;43:102064. doi: 10.1016/j.bbrep.2025.102064. eCollection 2025 Sep.
The enzyme carbonic anhydrase (CA) plays a key role in carbonate mineral formation by facilitating the interconversion between CO and bicarbonate ions, thus influencing carbonate precipitation processes in natural environments. This study investigates the biomineralization potential of strains isolated from two distinct coastal sabkhas in Qatar-Dohat Faishakh Sabkha (DFS) and Khor Al-Adaid Sabkha (KAS)-to better understand the enzymatic mechanisms driving carbonate formation in hypersaline environments. The isolated strains were evaluated for mineral formation and CA activity using three artificial media designed to simulate natural conditions: MD1, seawater-based with tryptone (SWTr), and evaporated seawater-based with tryptone (EWTr). While all strains demonstrated the ability to form minerals in MD1, only and , both exclusive to DFS, exhibited robust mineral precipitation in SWTr and EWTr media. These strains also showed significantly higher CA activity compared to and , which were present in both sabkhas but displayed limited mineralization and low enzymatic activity under saline conditions. Statistical analyses, including ANOVA and principal component analysis (PCA), confirmed the significant role of CA activity and salinity in modulating biomineralization potential among these strains. This research underscores the potential of CA-driven biomineralization for environmental applications. The ability of and to precipitate carbonates under high-salinity conditions positions them as promising candidates for bio-based carbon sequestration technologies.
碳酸酐酶(CA)通过促进CO与碳酸氢根离子之间的相互转化,在碳酸盐矿物形成过程中发挥关键作用,从而影响自然环境中的碳酸盐沉淀过程。本研究调查了从卡塔尔两个不同的海岸盐沼——法伊沙赫盐沼(DFS)和豪尔艾代德盐沼(KAS)分离出的菌株的生物矿化潜力,以更好地理解在高盐环境中驱动碳酸盐形成的酶促机制。使用三种旨在模拟自然条件的人工培养基对分离出的菌株进行矿物形成和CA活性评估:MD1、含胰蛋白胨的海水培养基(SWTr)和含胰蛋白胨的蒸发海水培养基(EWTr)。虽然所有菌株在MD1中都表现出形成矿物的能力,但只有DFS特有的 和 在SWTr和EWTr培养基中表现出强劲的矿物沉淀。与在两个盐沼中都存在但在盐渍条件下矿化有限且酶活性较低的 和 相比,这些菌株还表现出显著更高的CA活性。包括方差分析(ANOVA)和主成分分析(PCA)在内的统计分析证实了CA活性和盐度在调节这些菌株生物矿化潜力方面的重要作用。这项研究强调了CA驱动的生物矿化在环境应用中的潜力。 和 在高盐条件下沉淀碳酸盐的能力使它们成为基于生物的碳封存技术的有前途的候选者。