Maurya Anay K, Cadena Lawrence Rudy, Ehret Georg, Nowack Eva C M
Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
mBio. 2025 Sep 12:e0224725. doi: 10.1128/mbio.02247-25.
A single β-proteobacterial endosymbiont, Kinetoplastibacterium crithidii, resides in the cytosol of the trypanosomatid and divides at a defined stage of its host's cell cycle. This endosymbiont has a highly reduced genome of 0.8 Mb and, notably, has lost most essential bacterial division genes, resulting in a loss of division autonomy. It has been previously demonstrated that a host-encoded dynamin-like protein, ndosymbiont-argeted host rotein (ETP)9, plays an indispensable role in the division of the endosymbiont. In this study, we identified a second nucleus-encoded component of the endosymbiont division machinery, termed ETP2, currently annotated as a "hypothetical protein." We observed that ETP2 arrives before ETP9 at the bacterial division site. ETP2 deletion or depletion results in division phenotypes with long, filamentous endosymbionts accompanied by severely distorted host cells or host daughter cells lacking endosymbionts. We found that ETP2 depletion results in mis-localization of ETP9, whereas ETP2 localization to the endosymbiont division site is independent of ETP9. analyses revealed that ETP2 is found exclusively in endosymbiont-harboring trypanosomatids of the subfamily Strigomonadinae and is most likely an intrinsically disordered protein. Collectively, our data suggests that ETP2 is an integral component of the endosymbiont division machinery involved in recruiting ETP9 to the division site. This finding highlights the evolution of a complex host-derived molecular mechanism that exerts tight control over its endosymbiont without requiring gene transfers from the bacterium.
The ancient uptake and transformation of free-living bacteria into eukaryotic organelles involved extensive structural, physiological, and genetic changes. More recently established endosymbioses offer a unique opportunity to observe intermediate stages in the complex process by which a prokaryote becomes genetically integrated into a eukaryotic cell. Hence, studying the molecular mechanisms that govern host-endosymbiont interactions holds the potential for uncovering the scenarios and molecular processes behind organelle formation. The trypanosomatid has been recently reported to manifest nuclear control over its endosymbiont's division. In this study, we identified and characterized a new nucleus-encoded component of the endosymbiont division machinery. This study further supports that a novel intermediate between endosymbiont and organelle evolved in and provides new leverage to entangle the evolution of its fascinating nucleus-controlled endosymbiont division machinery.
一种单一的β-变形菌内共生体——克氏动质体菌,存在于锥虫的细胞质中,并在宿主细胞周期的特定阶段进行分裂。这种内共生体的基因组高度简化,只有0.8 Mb,值得注意的是,它已经失去了大多数基本的细菌分裂基因,导致失去了分裂自主性。先前已经证明,一种宿主编码的动力蛋白样蛋白,即内共生体靶向宿主蛋白(ETP)9,在该内共生体的分裂中起不可或缺的作用。在本研究中,我们鉴定出了内共生体分裂机制的第二个细胞核编码成分,称为ETP2,目前被注释为“假定蛋白”。我们观察到ETP2比ETP9更早到达细菌分裂位点。ETP2的缺失或耗尽会导致分裂表型,即出现长丝状的内共生体,同时伴有宿主细胞严重变形或宿主子细胞缺乏内共生体。我们发现ETP2的耗尽会导致ETP9定位错误,而ETP2定位于内共生体分裂位点则不依赖于ETP9。分析表明,ETP2仅存在于隐滴虫亚科携带内共生体的锥虫中,很可能是一种内在无序蛋白。总体而言,我们的数据表明ETP2是内共生体分裂机制的一个组成部分,参与将ETP9招募到分裂位点。这一发现突出了一种复杂的宿主衍生分子机制的进化,该机制在不需要细菌进行基因转移的情况下,对其内共生体进行严格控制。
将自由生活的细菌古老地摄取并转化为真核细胞器涉及广泛的结构、生理和遗传变化。最近建立的内共生关系提供了一个独特的机会,来观察原核生物在复杂过程中如何在基因上整合到真核细胞中的中间阶段。因此,研究控制宿主-内共生体相互作用的分子机制,有可能揭示细胞器形成背后的情况和分子过程。最近有报道称,锥虫对其内共生体的分裂表现出细胞核控制。在本研究中,我们鉴定并表征了内共生体分裂机制的一个新的细胞核编码成分。这项研究进一步支持了在内共生体和细胞器之间进化出了一种新的中间体,并为解开其迷人的细胞核控制的内共生体分裂机制的进化提供了新的手段。