Severini Giacomo, Muñoz David
School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland.
Insight Center for Data Analytics, University College Dublin, Dublin, Ireland.
PLoS Comput Biol. 2025 Sep 12;21(9):e1013494. doi: 10.1371/journal.pcbi.1013494. eCollection 2025 Sep.
Predictive simulations based on explicit, physiologically inspired, control policies, can be used to test theories on motor control and to evaluate the effect of interventions on the different components of control. Several control architectures have been proposed for simulating locomotor tasks, based on fully feedback, reflex-based, controllers, or on feedforward architectures mimicking the Central Pattern Generators. Hybrid architectures integrating both feedback and feedforward components represent a viable alternative to fully feedback or feedforward controllers. Current literature on controller-based simulations almost exclusively presents task-specific controllers that do not generalize across different tasks. The task-specificity of current controllers limits the generalizability of the neurophysiological principles behind such controllers. Here we propose a hybrid controller for predictive simulations of cycling where the feedforward component is based on a well-known theoretical model, the Unit Burst Generation model, and the feedback component includes a limited set of reflex pathways, expected to be active during steady cycling. We show that this controller can simulate physiological stationary cycling patterns at different desired speeds and seat heights. We also show that the controller can generalize to walking behaviors by just adding an additional control component for accounting balance needs. The controller here proposed, although simple in design, represent an instance of physiologically inspired generalizable controller for cyclical lower limb tasks.
基于明确的、受生理启发的控制策略进行的预测模拟,可用于检验运动控制理论,并评估干预措施对控制的不同组成部分的影响。已经提出了几种用于模拟运动任务的控制架构,基于完全反馈、基于反射的控制器,或模仿中枢模式发生器的前馈架构。整合反馈和前馈组件的混合架构是完全反馈或前馈控制器的可行替代方案。当前关于基于控制器的模拟的文献几乎只介绍了特定任务的控制器,这些控制器不能在不同任务中通用。当前控制器的任务特定性限制了此类控制器背后神经生理原理的通用性。在此,我们提出一种用于骑行预测模拟的混合控制器,其中前馈组件基于一个著名的理论模型——单位爆发生成模型,反馈组件包括一组有限的反射通路,预计在稳定骑行期间会活跃。我们表明,该控制器可以模拟不同期望速度和座椅高度下的生理静止骑行模式。我们还表明,通过仅添加一个用于考虑平衡需求的额外控制组件,该控制器可以推广到步行行为。这里提出的控制器虽然设计简单,但代表了一种受生理启发的、可用于周期性下肢任务的通用控制器实例。