Suppr超能文献

一种新型水下海参监测系统,该系统使用消费级两栖无人机,并采用基于曼巴的超分辨率重建和增强型YOLOv10。

A novel underwater Holothurians monitoring system using consumer-grade amphibious UAV with Mamba-based Super-Resolution Reconstruction and enhanced YOLOv10.

作者信息

Zhao Fan, Shao Xinlei, Wang Jiaqi, Chen Yijia, Xi Dianhan, Liu Yongying, Chen Jundong, Sasaki Jun, Mizuno Katsunori

机构信息

Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8563, Japan.

Department of Socio-Cultural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8563, Japan.

出版信息

Mar Environ Res. 2025 Sep 10;212:107510. doi: 10.1016/j.marenvres.2025.107510.

Abstract

Holothurians (commonly known as sea cucumbers) have economic and ecological value, making their monitoring essential for understanding ecosystem status and decision-making in ecological conservation and fishery management. Traditional monitoring of Holothurians has primarily relied on in situ visual census conducted by divers, which is labor-intensive, time-consuming, and often limited in spatial coverage. In recent years, underwater video and photographic surveys have emerged as supplementary tools, offering the potential for broader-scale and digital documentation. However, these imaging-based techniques remain constrained by limitations in image quality and resolution, often rely on outdated algorithms, lack ecological specificity, and cannot generate georeferenced orthophoto maps enriched with visualized demographic parameters. High-quality underwater images are essential for identifying species-specific morphological characteristics of Holothurians in video- or photo-based monitoring. However, the complexity of underwater environments poses significant challenges in acquiring such images. These limitations hinder accurate species identification and quantitative analysis, especially when relying on automated image analysis. Therefore, super-resolution reconstruction is necessary to enhance image clarity and detail, enabling more reliable mapping and demographic monitoring. Based on a field survey conducted in Koh Tao, Thailand, we developed a novel Holothurians monitoring system that integrates a custom-designed consumer-grade amphibious unoccupied aerial vehicle (AUAV), a Mamba-based super-resolution reconstruction technique, and an improved instance segmentation model (YOLOv10-SEA). Super-resolution images reconstructed by the MambaIR model were used as input for the YOLOv10-SEA model to perform instance segmentation of Holothurians. Among seven super-resolution methods evaluated (Bicubic, SRCNN, EDSR, RCAN, SwinIR, Real-ESRGAN, and MambaIR), MambaIR achieved the highest quantitative (PSNR: 45.58 dB, SSIM: 97.95%) and qualitative image quality. Instance segmentation on MambaIR-generated super-resolution images achieved a mean Average Precision at IoU 0.5 (mAP50) of 99.9%, using an optimal magnification factor of 4. This was achieved using YOLOv10-SEA, a lightweight model modified from YOLOv10 with three architectural changes, which improved mAP50 by 6.1% while keeping the model compact (16.2 MB). Segmentation was performed on individual super-resolution images, and the resulting outputs were subsequently used to generate orthomosaic habitat maps and extract demographic parameters, revealing localized distribution patterns and a stable size structure of holothurians. These findings demonstrate that the proposed system enables efficient and accurate monitoring of Holothurians, while also providing a pipeline to monitor other underwater objects, thereby benefiting conservation communities and fishery resource managers.

摘要

海参(通常被称为海黄瓜)具有经济和生态价值,因此对其进行监测对于了解生态系统状况以及在生态保护和渔业管理中做出决策至关重要。传统的海参监测主要依赖潜水员进行的现场目视普查,这种方法劳动强度大、耗时且空间覆盖范围往往有限。近年来,水下视频和摄影调查已成为补充工具,具有进行更广泛规模和数字化记录的潜力。然而,这些基于成像的技术仍然受到图像质量和分辨率限制的约束,通常依赖过时的算法,缺乏生态特异性,并且无法生成富含可视化人口统计参数的地理参考正射影像图。在基于视频或照片的监测中,高质量的水下图像对于识别海参特定物种的形态特征至关重要。然而,水下环境的复杂性给获取此类图像带来了重大挑战。这些限制阻碍了准确的物种识别和定量分析,尤其是在依赖自动图像分析时。因此,超分辨率重建对于提高图像清晰度和细节至关重要,从而能够进行更可靠的绘图和种群监测。基于在泰国涛岛进行的实地调查,我们开发了一种新型的海参监测系统,该系统集成了定制设计的消费级两栖无人飞行器(AUAV)、基于曼巴的超分辨率重建技术和改进的实例分割模型(YOLOv10 - SEA)。由曼巴红外模型重建的超分辨率图像被用作YOLOv10 - SEA模型的输入,以对海参进行实例分割。在评估的七种超分辨率方法(双立方、SRCNN、EDSR、RCAN、SwinIR、Real - ESRGAN和曼巴红外)中,曼巴红外在定量(峰值信噪比:45.58 dB,结构相似性指数:97.95%)和定性图像质量方面表现最佳。使用最佳放大倍数4,在曼巴红外生成的超分辨率图像上进行实例分割,在交并比为0.5时的平均精度均值(mAP50)达到99.9%。这是通过YOLOv10 - SEA实现的,它是从YOLOv10修改而来的轻量级模型,经过三处架构更改,在保持模型紧凑(16.2 MB)的同时将mAP50提高了6.1%。分割是在单个超分辨率图像上进行的,随后将得到的输出用于生成正射镶嵌栖息地地图并提取人口统计参数,揭示了海参的局部分布模式和稳定的大小结构。这些发现表明,所提出的系统能够对海参进行高效准确的监测,同时还提供了一种监测其他水下物体的流程,从而使保护团体和渔业资源管理者受益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验