Suppr超能文献

碳载体增强了金属-载体相互作用,使得在恒流条件下能够实现更高浓度糠醛的加氢反应。

Carbon support enhanced metal - support interaction enabling higher concentration furfural hydrogenation at constant current conditions.

作者信息

Liu Xiongqin, Liu Xuanrui, Zhao Jun, Ban Mingruo, Wu Shutao, Liu Fei

机构信息

Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China.

Department of Chemical Engineering, School of North Alabama International College of Engineering and Technology, Guizhou University, Guiyang, Guizhou 550025, China.

出版信息

J Colloid Interface Sci. 2025 Sep 8;702(Pt 2):138976. doi: 10.1016/j.jcis.2025.138976.

Abstract

The electrochemical reduction of furfural (FF) offers a sustainable approach for producing value-added furfural alcohol (FA). Nevertheless, the limited adsorbed hydrogen (*H) generation capacity on Cu cathode restricts the reaction performance. Because the competitive adsorption of FF and *H decreases *H coverage and induces severe dimerization, most prior studies employed low FF concentrations (typically 20 mM) under constant potential conditions. In this work, carbon-supported Cu nanoparticles grown on Cu nanowire arrays (defined as Cu@Cu/C) were combined with constant current electrolysis for high-concentration FF reduction. A high Faradaic efficiency (72.9 %) and production rate (0.14 mmol cm h) of FA were realized at -10 mA cm, with a conversion of 98.1 %. Both the Faradaic efficiency and production rate can be sustained with gradual increases in current density or adjustments of FF concentration within a certain range, showing substantial enhancement relative to Cu-nano. Compared with pure Cu-nano, the favorable interaction between Cu nanoparticles and carbon support was certified to regulate the adsorption configuration and strength of FF, and enhance the *H generation performance, which optimizes the *H coverage at cathodic surface and promotes FF hydrogenation with *H via an electrocatalytic hydrogenation (ECH) mechanism. Overall, this work provides a simple and feasible strategy to promote interfacial *H, thus enhancing higher concentration hydrogenation of FF to FA by constant current electrolysis over Cu-based cathode.

摘要

糠醛(FF)的电化学还原为生产高附加值的糠醇(FA)提供了一种可持续的方法。然而,铜阴极上有限的吸附氢(H)生成能力限制了反应性能。由于FF和H的竞争性吸附降低了H覆盖率并引发严重的二聚反应,大多数先前的研究在恒电位条件下采用低FF浓度(通常为20 mM)。在这项工作中,生长在铜纳米线阵列上的碳负载铜纳米颗粒(定义为Cu@Cu/C)与恒电流电解相结合,用于高浓度FF还原。在-10 mA cm下实现了FA的高法拉第效率(72.9%)和产率(0.14 mmol cm h),转化率为98.1%。随着电流密度的逐渐增加或在一定范围内调整FF浓度,法拉第效率和产率均可保持,相对于铜纳米颗粒有显著提高。与纯铜纳米颗粒相比,铜纳米颗粒与碳载体之间的良好相互作用被证明可调节FF的吸附构型和强度,并增强H生成性能,从而优化阴极表面的H覆盖率,并通过电催化氢化(ECH)机制促进FF与H的氢化反应。总体而言,这项工作提供了一种简单可行的策略来促进界面*H,从而通过基于铜的阴极上的恒电流电解增强FF到FA的更高浓度氢化反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验