Suppr超能文献

利用最大熵模型预测气候变化下桑萎蔫病菌在全球的传播。

Projecting the global spread of xylella fastidiosa under climate change using maxent modeling.

作者信息

Alqahtani Monerah S M, Elshahawi Amal K, Khalaf Sameh M H

机构信息

Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia.

Faculty of Biotechnology, October University for Modern Sciences & Arts (MSA University), 6th October City 12566, Cairo, Egypt.

出版信息

Sci Rep. 2025 Sep 12;15(1):32460. doi: 10.1038/s41598-025-18286-2.

Abstract

Xylella fastidiosa, a virulent plant pathogen native to the Americas, presents considerable risks to economically valuable crops and ornamental flora. It is a highly virulent bacterium that causes the most critical plant infections. Many regions around the world such as the European Union countries posed the strongest constraints to prevent the introduction and spread of Xylella fastidiosa, including obligatory surveillance, and removal measures for new outbreaks. This research utilizes Geographic Information Systems (GIS) and maximum entropy modeling (Maxent) to forecast the worldwide dissemination of Xylella fastidiosa across different climate change scenarios. We gathered occurrence data from various sources, yielding 113 distinct sites, and employed 19 bioclimatic variables from the WorldClim database to ascertain four principal factors-precipitation seasonality, precipitation of the driest month, mean temperature of the warmest quarter, and minimum temperature of the coldest month-that affect habitat suitability. The Maxent model exhibited superior performance, with an Area Under the Curve (AUC) of 0.91 and a True Skill Statistic (TSS) of 0.66, signifying its efficacy in forecasting suitable environments. Current distribution maps indicate high-risk areas predominantly in subtropical and tropical regions, particularly in the Americas and Mediterranean Europe. Forecasts for 2050 and 2070 based on Representative Concentration Pathways (RCP) suggest a significant expansion of these high-risk areas, implying that climate change may intensify the proliferation of this pathogen especially under elevated emissions scenarios. These findings highlight the critical necessity for proactive management techniques to alleviate the dangers associated with Xylella fastidiosa, protecting global agricultural systems and biodiversity.

摘要

木质部难养菌是一种原产于美洲的致病性很强的植物病原体,对经济价值高的作物和观赏植物构成了相当大的风险。它是一种致病性极强的细菌会引发最为严重的植物感染。世界上许多地区,如欧盟国家,都采取了最严格的限制措施来防止木质部难养菌的传入和传播,包括强制性监测以及对新疫情的清除措施。本研究利用地理信息系统(GIS)和最大熵建模(Maxent)来预测木质部难养菌在不同气候变化情景下在全球的传播情况。我们从各种来源收集了发生数据,得到了113个不同的地点,并使用了来自WorldClim数据库的19个生物气候变量,以确定影响栖息地适宜性的四个主要因素——降水季节性、最干燥月份的降水量、最暖季度的平均温度和最冷月的最低温度。Maxent模型表现出卓越的性能,曲线下面积(AUC)为0.91,真技能统计量(TSS)为0.66,表明其在预测适宜环境方面的有效性。当前的分布图显示,高风险地区主要分布在亚热带和热带地区,特别是在美洲和地中海欧洲。基于代表性浓度路径(RCP)对2050年和2070年的预测表明,这些高风险地区将大幅扩张,这意味着气候变化可能会加剧这种病原体的扩散,尤其是在排放增加的情景下。这些发现凸显了采取积极管理技术以减轻与木质部难养菌相关危险的紧迫性,从而保护全球农业系统和生物多样性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66e/12432209/6c085f9d7945/41598_2025_18286_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验