Suppr超能文献

脑电图微状态在意识障碍谱系中的变化动态

Dynamics of EEG Microstates Change Across the Spectrum of Disorders of Consciousness.

作者信息

Manasova Dragana, Perl Yonatan Sanz, Bruno Nicolas Marcelo, Valente Melanie, Rohaut Benjamin, Tagliazucchi Enzo, Naccache Lionel, Raimondo Federico, Sitt Jacobo D

机构信息

Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inserm, Paris, 75013, France.

Université de Paris Cité, Paris, France.

出版信息

Brain Topogr. 2025 Sep 13;38(6):65. doi: 10.1007/s10548-025-01142-x.

Abstract

As a response to the environment and internal signals, brain networks reorganize on a sub-second scale. To capture this reorganization in patients with disorders of consciousness (DoC) and understand their residual brain activity, we investigated the dynamics of electroencephalography (EEG) microstates. EEG microstates are meta-stable topographies that last tens to a few hundreds of milliseconds and are hypothesized to reflect large-scale cortical networks. To obtain EEG‑microstate segmentation, EEG topographies per sample were clustered into four groups for the purpose of the present comparison with the existing four‑class literature. We then obtained a time series of maps with different frequencies of occurrence and duration. One such occurrence of a map with a given duration is called a microstate. The goal of this work was to study the static and dynamic properties of these topographical patterns in DoC patients. Using the microstate time series, we calculated static and dynamic markers. In contrast to the static, the dynamic metrics depend on the specific temporal sequences of the maps. The static measure map coverage showed differences between healthy controls and patients. In contrast, some dynamic markers captured inter-patient group differences. The dynamic markers we investigated are Mean Microstate Durations (MMD), Microstate Duration Variances (MDV), Microstate Transition Matrices (MTM), and Entropy Production (EP). The MMD and MDV decreased with the state of consciousness, whereas the MTM non-diagonal transitions and EP increased. In other words, DoC patients had slower and closer to equilibrium (time-reversible) brain dynamics. In conclusion, static and dynamic EEG microstate metrics differed across consciousness levels, with the latter having captured the subtler differences between groups of patients with DoC.

摘要

作为对环境和内部信号的一种反应,脑网络会在亚秒级尺度上进行重组。为了捕捉意识障碍(DoC)患者的这种重组情况并了解他们残留的脑活动,我们研究了脑电图(EEG)微状态的动力学。EEG微状态是持续数十到几百毫秒的亚稳态地形图,据推测可反映大规模皮质网络。为了获得EEG微状态分割,为了与现有的四类文献进行比较,每个样本的EEG地形图被聚类为四组。然后我们得到了具有不同出现频率和持续时间的图谱时间序列。具有给定持续时间的图谱的一次这样的出现被称为一个微状态。这项工作的目标是研究DoC患者中这些地形模式的静态和动态特性。利用微状态时间序列,我们计算了静态和动态指标。与静态指标不同,动态指标取决于图谱的特定时间序列。静态测量的图谱覆盖率在健康对照者和患者之间显示出差异。相比之下,一些动态指标捕捉到了患者组间的差异。我们研究的动态指标包括平均微状态持续时间(MMD)、微状态持续时间方差(MDV)、微状态转移矩阵(MTM)和熵产生(EP)。MMD和MDV随着意识状态下降,而MTM非对角线转移和EP增加。换句话说,DoC患者的脑动力学更慢且更接近平衡(时间可逆)。总之,静态和动态EEG微状态指标在不同意识水平上存在差异,后者捕捉到了DoC患者组之间更细微的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/276b/12431892/ed710d7101c9/10548_2025_1142_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验