Suppr超能文献

用于血液癌症多组学特征分析的机器学习:一项系统综述

Machine Learning for Multi-Omics Characterization of Blood Cancers: A Systematic Review.

作者信息

Alhamrani Sultan Qalit, Ball Graham Roy, El-Sherif Ahmed A, Ahmed Shaza, Mousa Nahla O, Alghorayed Shahad Ali, Alatawi Nader Atallah, Ali Albalawi Mohammed, Alqahtani Fahad Abdullah, Gabre Refaat M

机构信息

Tabuk Poison Control and Forensic Medicinal Chemistry Center, Ministry of Health, Tabuk 47915, Saudi Arabia.

Department of Biotechnology, Faculty of Science, Cairo University, Giza 12613, Egypt.

出版信息

Cells. 2025 Sep 4;14(17):1385. doi: 10.3390/cells14171385.

Abstract

Artificial Intelligence and machine learning are increasingly used to interrogate complex biological data. This systematic review evaluates their application to multi-omics for the molecular characterization of hematological malignancies, an area with unmet clinical need. We searched PubMed, Embase, Institute of Electrical and Electronics Engineers Xplore, and Web of Science from January 2015 to December 2024. Two reviewers screened records, extracted data, and used a modified appraisal emphasizing explainability, performance, reproducibility, and ethics. From 2847 records, 89 studies met inclusion criteria. Studies focused on acute myeloid leukemia (34), acute lymphoblastic leukemia (23), and multiple myeloma (18). Other hematological diseases were less frequently studied. Methods included Support Vector Machines, Random Forests, and deep learning (28, 25, and 24 studies). Multi-omics integration was reported in 23 studies. External validation occurred in 31 studies, and explainability in 19. The median diagnostic area under the curve was 0.87 (interquartile range 0.81 to 0.94); deep learning reached 0.91 but offered the least explainability. Artificial Intelligence and machine learning show promise for molecular characterization, yet gaps in validation, interpretability, and standardization remain. Priorities include external validation, interpretable modeling, harmonized evaluation, and standardized reporting with shared benchmarks to enable safe, reproducible clinical translation.

摘要

人工智能和机器学习越来越多地用于分析复杂的生物学数据。本系统评价评估了它们在多组学中的应用,以用于血液系统恶性肿瘤的分子特征分析,这是一个临床需求未得到满足的领域。我们检索了2015年1月至2024年12月期间的PubMed、Embase、电气和电子工程师协会数据库(IEEE Xplore)以及科学网。两名评审员筛选记录、提取数据,并采用了一种经过修改的评估方法,重点强调可解释性、性能、可重复性和伦理问题。从2847条记录中,有89项研究符合纳入标准。研究主要集中在急性髓系白血病(34项)、急性淋巴细胞白血病(23项)和多发性骨髓瘤(18项)。其他血液系统疾病的研究较少。方法包括支持向量机、随机森林和深度学习(分别有28项、25项和24项研究)。23项研究报告了多组学整合情况。31项研究进行了外部验证,19项研究涉及可解释性。曲线下诊断面积的中位数为0.87(四分位间距为0.81至0.94);深度学习达到了0.91,但可解释性最低。人工智能和机器学习在分子特征分析方面显示出前景,但在验证、可解释性和标准化方面仍存在差距。优先事项包括外部验证、可解释建模、统一评估以及采用共享基准进行标准化报告,以实现安全、可重复的临床转化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c2c/12427946/c2403e8fb9ba/cells-14-01385-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验