Suppr超能文献

基于人工智能的结缔组织病相关间质性肺疾病的高分辨率计算机断层扫描定量分析

AI-Based HRCT Quantification in Connective Tissue Disease-Associated Interstitial Lung Disease.

作者信息

Russo Anna, Patanè Vittorio, Oliva Alessandra, Viglione Vittorio, Franzese Linda, Forte Giulio, Liakouli Vasiliki, Perrotta Fabio, Reginelli Alfonso

机构信息

Department of Precision Medicine, University Hospital "Luigi Vanvitelli", University of Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138 Naples, Italy.

U.O.C. Clinica Pneumologica L. Vanvitelli, Monaldi Hospital, A.O. dei Colli, 80131 Naples, Italy.

出版信息

Diagnostics (Basel). 2025 Aug 28;15(17):2179. doi: 10.3390/diagnostics15172179.

Abstract

Interstitial lung disease (ILD) is a frequent and potentially progressive manifestation in patients with connective tissue diseases (CTDs). Accurate and reproducible quantification of parenchymal abnormalities on high-resolution computed tomography (HRCT) is essential for evaluating treatment response and monitoring disease progression, particularly in complex cases undergoing antifibrotic therapy. Artificial intelligence (AI)-based tools may improve consistency in visual assessment and assist less experienced radiologists in longitudinal follow-up. In this retrospective study, 48 patients with CTD-related ILD receiving antifibrotic treatment were included. Each patient underwent four HRCT scans, which were evaluated independently by two radiologists (one expert, one non-expert) using a semi-quantitative scoring system. Percentage estimates of lung involvement were assigned for four parenchymal patterns: hyperlucency, ground-glass opacity (GGO), reticulation, and honeycombing. AI-based analysis was performed using the Imbio Lung Texture Analysis platform, which generated continuous volumetric percentages for each pattern. Concordance between AI and human interpretation was assessed, along with mean absolute error (MAE) and inter-reader differences. The AI-based system demonstrated high concordance with the expert radiologist, with an overall agreement of 81% across patterns. The MAE between AI and the expert ranged from 1.8% to 2.6%. In contrast, concordance between AI and the non-expert radiologist was significantly lower (60-70%), with higher MAE values (3.9% to 5.2%). McNemar's and Wilcoxon tests confirmed that AI aligned more closely with the expert than the non-expert reader ( < 0.01). AI proved particularly effective in detecting subtle changes in parenchymal burden during follow-up, especially when visual interpretation was inconsistent. AI-driven quantitative imaging offers performance comparable to expert radiologists in assessing ILD patterns on HRCT and significantly outperforms less experienced readers. Its reproducibility and sensitivity to change support its role in standardizing follow-up evaluations and enhancing multidisciplinary decision-making in patients with CTD-related ILD, particularly in progressive fibrosing cases receiving antifibrotic therapy.

摘要

间质性肺疾病(ILD)是结缔组织病(CTD)患者常见且可能进展的表现。在高分辨率计算机断层扫描(HRCT)上准确且可重复地量化实质异常对于评估治疗反应和监测疾病进展至关重要,尤其是在接受抗纤维化治疗的复杂病例中。基于人工智能(AI)的工具可能会提高视觉评估的一致性,并在纵向随访中帮助经验较少的放射科医生。在这项回顾性研究中,纳入了48例接受抗纤维化治疗的CTD相关ILD患者。每位患者接受了四次HRCT扫描,由两名放射科医生(一名专家,一名非专家)使用半定量评分系统独立评估。针对四种实质模式分配了肺受累的百分比估计值:透亮度增加、磨玻璃影(GGO)、网状影和蜂窝状影。使用Imbio肺纹理分析平台进行基于AI的分析,该平台为每种模式生成连续的体积百分比。评估了AI与人工解读之间的一致性,以及平均绝对误差(MAE)和阅片者间差异。基于AI的系统与专家放射科医生表现出高度一致性,各模式的总体一致性为81%。AI与专家之间的MAE范围为1.8%至2.6%。相比之下,AI与非专家放射科医生之间的一致性显著较低(60 - 70%),MAE值较高(3.9%至5.2%)。McNemar检验和Wilcoxon检验证实,AI与专家的一致性比与非专家阅片者更紧密(<0.01)。AI在随访期间检测实质负担的细微变化方面特别有效,尤其是在视觉解读不一致时。在评估HRCT上的ILD模式时,AI驱动的定量成像表现与专家放射科医生相当,并且明显优于经验较少的阅片者。其可重复性和对变化的敏感性支持其在标准化CTD相关ILD患者的随访评估以及加强多学科决策中的作用,特别是在接受抗纤维化治疗的进行性纤维化病例中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/997b/12427690/2dc519ff9bdd/diagnostics-15-02179-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验