Bhagwat Seema K, Patil Sachin V, Vidal-Limon Abraham, Jimenez-Halla J Oscar C, Ghotekar Balasaheb K, Bobade Vivek D, Pérez-Landa Irving David, Delgado-Alvarado Enrique, Hernández-Rosas Fabiola, Pawar Tushar Janardan
Department of Chemistry, Research Centre HPT Arts, RYK Science College (Affiliated to S. P. Pune University), Nashik 422005, Maharashtra, India.
Red de Estudios Moleculares Avanzados, Instituto de Ecología, A. C., Carretera Antigua a Coatepec 351, Xalapa 91073, Veracruz, Mexico.
Molecules. 2025 Sep 8;30(17):3651. doi: 10.3390/molecules30173651.
Type 2 diabetes mellitus (T2DM) remains a global health challenge, prompting the development of novel α-glucosidase inhibitors (AGIs) to regulate postprandial hyperglycemia. This study reports the design, synthesis, and evaluation of indole-based Schiff base derivatives (-) bearing a fixed methoxy group at the C position. This substitution was strategically introduced to enhance lipophilicity, electronic delocalization, and π-stacking within the enzyme active site. Among the series, compound (3-bromophenyl) exhibited the highest inhibitory activity (IC = 10.89 µM), outperforming the clinical reference acarbose (IC = 48.95 µM). The mechanism was supported by in silico analyses, such as the Density Functional Theory (DFT), molecular electrostatic potential (MEP) mapping, and molecular dynamics simulations, and CNN-based docking revealed that engages in stable hydrogen bonding and π-π interactions with key residues (Asp327, Asp542, and Phe649), suggesting a potent and selective mode of inhibition. In silico ADMET predictions indicated favorable pharmacokinetic properties. Together, these results establish C-methoxy substitution as a viable strategy to enhance α-glucosidase inhibition in indole-based scaffolds.
2型糖尿病(T2DM)仍然是一项全球性的健康挑战,这促使人们开发新型α-葡萄糖苷酶抑制剂(AGIs)来调节餐后高血糖。本研究报告了在C位带有固定甲氧基的吲哚基席夫碱衍生物(-)的设计、合成及评估。策略性地引入这种取代基是为了增强脂溶性、电子离域以及在酶活性位点内的π堆积。在该系列化合物中,化合物(3-溴苯基)表现出最高的抑制活性(IC = 10.89 µM),优于临床对照药阿卡波糖(IC = 48.95 µM)。密度泛函理论(DFT)、分子静电势(MEP)映射和分子动力学模拟等计算机模拟分析支持了其作用机制,基于卷积神经网络(CNN)的对接显示该化合物与关键残基(Asp327、Asp542和Phe649)形成稳定的氢键和π-π相互作用,表明其具有强效且选择性的抑制模式。计算机模拟的ADMET预测表明其具有良好的药代动力学性质。总之,这些结果表明C-甲氧基取代是增强基于吲哚骨架的α-葡萄糖苷酶抑制作用的一种可行策略。