Jalali Milad, Wang Kai, Xu Haoxiang, Liu Yaowen, Eimer Sylvain
School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.
National Key Laboratory of Spintronics, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China.
Materials (Basel). 2025 Aug 27;18(17):4008. doi: 10.3390/ma18174008.
The interfacial Dzyaloshinskii-Moriya interaction (DMI) plays a pivotal role in stabilising and controlling the motion of chiral spin textures, such as Néel-type bubble domains, in ultrathin magnetic films-an essential feature for next-generation spintronic devices. In this work, we investigate domain wall (DW) dynamics in magnetron-sputtered Ta(3 nm)/Pt(3 nm)/Co(1 nm)/RuO(1 nm) [Ru(1 nm)]/Pt(3 nm) multilayers, benchmarking their behaviour against control stacks. Vibrating sample magnetometry (VSM) was employed to determine saturation magnetisation and perpendicular magnetic anisotropy (PMA), while polar magneto-optical Kerr effect (P-MOKE) measurements provided coercivity data. Kerr microscopy visualised the expansion of bubble-shaped domains under combined perpendicular and in-plane magnetic fields, enabling the extraction of effective DMI fields. Brillouin light scattering (BLS) spectroscopy quantified the asymmetric propagation of spin waves, and micromagnetic simulations corroborated the experimental findings. The Pt/Co/RuO system exhibits a Dzyaloshinskii-Moriya interaction (DMI) constant of ≈1.08 mJ/m, slightly higher than the Pt/Co/Ru system (≈1.03 mJ/m) and much higher than the Pt/Co control (≈0.23 mJ/m). Correspondingly, domain walls in the RuO-capped films show pronounced velocity asymmetry under in-plane fields, whereas the symmetric Pt/Co/Pt shows negligible asymmetry. Despite lower depinning fields in the Ru-capped sample, its domain walls move faster than those in the RuO-capped sample, indicating reduced pinning. Our results demonstrate that integrating RuO significantly alters interfacial spin-orbit interactions.
界面Dzyaloshinskii-Moriya相互作用(DMI)在稳定和控制超薄磁性薄膜中手性自旋纹理(如尼尔型泡畴)的运动方面起着关键作用,这是下一代自旋电子器件的一个基本特征。在这项工作中,我们研究了磁控溅射Ta(3 nm)/Pt(3 nm)/Co(1 nm)/RuO(1 nm) [Ru(1 nm)]/Pt(3 nm)多层膜中的畴壁(DW)动力学,并将其行为与对照堆叠进行了比较。采用振动样品磁强计(VSM)来确定饱和磁化强度和垂直磁各向异性(PMA),而极化磁光克尔效应(P-MOKE)测量提供了矫顽力数据。克尔显微镜观察了在垂直和平行平面磁场组合下泡状畴的扩展,从而能够提取有效的DMI场。布里渊光散射(BLS)光谱对自旋波的不对称传播进行了量化,微磁模拟证实了实验结果。Pt/Co/RuO系统的Dzyaloshinskii-Moriya相互作用(DMI)常数约为1.08 mJ/m²,略高于Pt/Co/Ru系统(约1.03 mJ/m²),远高于Pt/Co对照(约0.23 mJ/m²)。相应地,RuO覆盖的薄膜中的畴壁在平面内磁场下表现出明显的速度不对称性,而对称的Pt/Co/Pt表现出可忽略不计的不对称性。尽管Ru覆盖样品中的脱钉场较低,但其畴壁移动速度比RuO覆盖样品中的畴壁快,表明钉扎减少。我们的结果表明,引入RuO会显著改变界面自旋轨道相互作用。