Chrobak Dariusz
Institute of Materials Engineering, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
Materials (Basel). 2025 Aug 27;18(17):4011. doi: 10.3390/ma18174011.
Despite the remarkable developments in advanced materials, silicon and gallium arsenide remain among the leading semiconductors of our time. Nanomechanical studies of these semiconductor crystals, including nanoindentation-induced structural phase transformations and dislocation generation, remain important for science and technology. Of particular interest are studies on the onset of plasticity. What phenomenon initiates plastic deformation in Si and GaAs during nanoindentation? Through complex experiments and computer simulations, significant progress has been made in answering this question over the past twenty years. Indeed, equipping nanoindentation systems with the ability to record Raman spectra and exploring new interatomic interaction models for classical molecular dynamics have opened up new avenues for studying the non-trivial interplay between structural phase transformations and dislocation activity in semiconductor crystals. The diversity of high-pressure phases, especially silicon, and the largely unexplored sequences of transformations between them continue to inspire new scientific challenges. This article reviews selected works introducing the reader to the fascinating and still open topic of nanoindentation-induced incipient plasticity in silicon and gallium arsenide.
尽管先进材料取得了显著进展,但硅和砷化镓仍是当今时代领先的半导体材料。对这些半导体晶体的纳米力学研究,包括纳米压痕诱导的结构相变和位错产生,对科学技术仍然至关重要。特别令人感兴趣的是对塑性起始的研究。在纳米压痕过程中,是什么现象引发了硅和砷化镓中的塑性变形?在过去二十年中,通过复杂的实验和计算机模拟,在回答这个问题上取得了重大进展。事实上,为纳米压痕系统配备记录拉曼光谱的能力,并探索经典分子动力学的新原子间相互作用模型,为研究半导体晶体中结构相变和位错活动之间的重要相互作用开辟了新途径。高压相的多样性,特别是硅,以及它们之间很大程度上未被探索的转变序列,继续引发新的科学挑战。本文回顾了一些选定的作品,向读者介绍了硅和砷化镓中纳米压痕诱导的初始塑性这一引人入胜且仍未解决的主题。