Zhang Hongshuo, Zhou Guohui, He Wei, Deng Hanlin
School of Computer Science and Information Engineering, Harbin Normal University, Harbin 150025, China.
Sensors (Basel). 2025 Sep 1;25(17):5386. doi: 10.3390/s25175386.
Accurate detection of student behavior in the classroom helps analyze students' learning states and contributes to improving teaching effectiveness. We propose the PLA-YOLO11n classroom behavior detection model. We design a novel C3K2_PConv module that integrates partial convolution with modules from the YOLO11 network and apply it to the backbone and neck feature fusion layers. To enhance small-target feature representation, we incorporate a large-kernel self-attention (LSKA) mechanism and replace the SPPF at the end of the backbone with the attention feature integration module (AIFI). We also add a high-resolution detection head. Experimental results on the SCB2 dataset demonstrate that the improved model outperforms the original YOLO11, achieving an increase of 3.8% in mean average precision (mAP@0.5).
准确检测课堂上学生的行为有助于分析学生的学习状态,并有助于提高教学效果。我们提出了PLA-YOLO11n课堂行为检测模型。我们设计了一种新颖的C3K2_PConv模块,该模块将局部卷积与YOLO11网络的模块相结合,并将其应用于主干和颈部特征融合层。为了增强小目标特征表示,我们引入了大内核自注意力(LSKA)机制,并用注意力特征集成模块(AIFI)替换主干末端的SPPF。我们还添加了一个高分辨率检测头。在SCB2数据集上的实验结果表明,改进后的模型优于原始的YOLO11,平均精度均值(mAP@0.5)提高了3.8%。