Suppr超能文献

基于PLA - YOLO11n的课堂行为检测方法

Classroom Behavior Detection Method Based on PLA-YOLO11n.

作者信息

Zhang Hongshuo, Zhou Guohui, He Wei, Deng Hanlin

机构信息

School of Computer Science and Information Engineering, Harbin Normal University, Harbin 150025, China.

出版信息

Sensors (Basel). 2025 Sep 1;25(17):5386. doi: 10.3390/s25175386.

Abstract

Accurate detection of student behavior in the classroom helps analyze students' learning states and contributes to improving teaching effectiveness. We propose the PLA-YOLO11n classroom behavior detection model. We design a novel C3K2_PConv module that integrates partial convolution with modules from the YOLO11 network and apply it to the backbone and neck feature fusion layers. To enhance small-target feature representation, we incorporate a large-kernel self-attention (LSKA) mechanism and replace the SPPF at the end of the backbone with the attention feature integration module (AIFI). We also add a high-resolution detection head. Experimental results on the SCB2 dataset demonstrate that the improved model outperforms the original YOLO11, achieving an increase of 3.8% in mean average precision (mAP@0.5).

摘要

准确检测课堂上学生的行为有助于分析学生的学习状态,并有助于提高教学效果。我们提出了PLA-YOLO11n课堂行为检测模型。我们设计了一种新颖的C3K2_PConv模块,该模块将局部卷积与YOLO11网络的模块相结合,并将其应用于主干和颈部特征融合层。为了增强小目标特征表示,我们引入了大内核自注意力(LSKA)机制,并用注意力特征集成模块(AIFI)替换主干末端的SPPF。我们还添加了一个高分辨率检测头。在SCB2数据集上的实验结果表明,改进后的模型优于原始的YOLO11,平均精度均值(mAP@0.5)提高了3.8%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/081a/12430938/5852323f1626/sensors-25-05386-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验