Suppr超能文献

基于改进的YOLOv8s的实时课堂学生行为检测

Real-time classroom student behavior detection based on improved YOLOv8s.

作者信息

Sheng Xiaojing, Li Suqiang, Chan Sixian

机构信息

College of Teacher Education, Quzhou University, Quzhou, 324099, China.

College of Education, Zhejiang Normal University, Jinhua, 321001, China.

出版信息

Sci Rep. 2025 Apr 25;15(1):14470. doi: 10.1038/s41598-025-99243-x.

Abstract

The learning capacity of students is significantly influenced by the quality of instruction they receive in the classroom. With the rapid advancement of behavior detection technology, identifying classroom behaviors of students is becoming increasingly common in educational settings. However, the field still faces specific challenges, primarily concerning the accuracy of identifying student behaviors within complex and variable classroom environments, as well as the real-time capabilities of detection algorithms. To address these challenges, we propose an efficient and straightforward algorithm based on the YOLO architecture. A Multi-scale Large Kernel Convolution Module (MLKCM) has been designed to capture feature information across various dimensions through multi-axis pooling, achieving adaptive receptive fields and effectively capturing multi-scale features. This design enhances the network's sensitivity to feature information by incorporating convolution kernels of varying sizes. Subsequently, we introduce a Progressive Feature Optimization Module (PFOM) to segment the channel dimension of the input feature map. This module integrates feature refinement blocks progressively, which not only preserve the refined features but also efficiently aggregate both local and global information. Finally, we conducted comprehensive experiments using the SCB-Dataset3-S and SCB-Dataset3-U datasets. The results demonstrated mean Average Precision (mAP) values of 76.5% and 95.0%, respectively, surpassing other commonly used detection techniques. Additionally, the effectiveness of our approach was validated through ablation studies and visualization of the detection outcomes.

摘要

学生的学习能力受到他们在课堂上所接受教学质量的显著影响。随着行为检测技术的迅速发展,识别学生在课堂上的行为在教育环境中变得越来越普遍。然而,该领域仍然面临一些特定挑战,主要涉及在复杂多变的课堂环境中识别学生行为的准确性,以及检测算法的实时能力。为了应对这些挑战,我们提出了一种基于YOLO架构的高效且简单的算法。设计了一个多尺度大内核卷积模块(MLKCM),通过多轴池化来跨不同维度捕获特征信息,实现自适应感受野并有效捕获多尺度特征。这种设计通过合并不同大小的卷积核来提高网络对特征信息的敏感度。随后,我们引入了一个渐进特征优化模块(PFOM)来分割输入特征图的通道维度。该模块逐步集成特征细化块,这不仅保留了细化后的特征,还能有效地聚合局部和全局信息。最后,我们使用SCB - Dataset3 - S和SCB - Dataset3 - U数据集进行了全面实验。结果表明,平均精度均值(mAP)分别为76.5%和95.0%,超过了其他常用的检测技术。此外,我们方法的有效性通过消融研究和检测结果的可视化得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/607c/12032004/416f0897ad53/41598_2025_99243_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验