Suppr超能文献

基于物理驱动的计算多光谱成像用于精确颜色测量。

Physics-Driven Computational Multispectral Imaging for Accurate Color Measurement.

作者信息

Yi Haoyu, Zhou Mingwei, Xie Hao, Chen Bingshan, Wang Yaqi, Liu Fei, Shen Jiefei, Shen Junfei

机构信息

College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China.

Mindray Bio-Medical Electronics Co., Ltd., Shenzhen 518132, China.

出版信息

Sensors (Basel). 2025 Sep 2;25(17):5443. doi: 10.3390/s25175443.

Abstract

Accurate color measurement is crucial for ensuring reliable sensing performance in vision-based applications. However, existing color measurement methods suffer from illumination variability, operational complexity, and perceptual subjectivity. In this study, dental color measurement, with its strict perceptual and spectral fidelity demands, is adopted to validate the proposed method. Using self-made resin-permeated ceramic teeth, this study proposes a deep-learned end-to-end spectral reflectance prediction framework to achieve snapshot teeth spectral reflectance from RGB images under complex light sources in the fundamental spectral domain through the construction of a physically interpretable network that enables physically informed feature fusion. A dual-attention modular-information fusion neural network is developed to recover the spectral reflectance directly from the RGB image for natural teeth and ceramics across multiple scenarios. A dataset containing 4000 RGB-hyperspectral image pairs is built from a self-designed optical system with complex illumination conditions. Results confirm that the proposed framework demonstrates effective performance in predicting teeth spectral reflectance with an MSE of 0.0024 and an SSIM of 0.8724. This method achieves high-accuracy color measurement while avoiding the color mismatch caused by metamerism, which empowers various advanced applications including optical property characterization, 3D surface reconstruction, and computer-aided restorative design.

摘要

准确的颜色测量对于确保基于视觉的应用中的可靠传感性能至关重要。然而,现有的颜色测量方法存在光照变化、操作复杂和感知主观性等问题。在本研究中,采用具有严格感知和光谱保真度要求的牙齿颜色测量来验证所提出的方法。本研究使用自制的树脂渗透陶瓷牙,通过构建一个能够实现物理信息特征融合的可物理解释网络,提出了一种深度学习的端到端光谱反射率预测框架,以在基本光谱域中复杂光源下从RGB图像中获取快照牙齿光谱反射率。开发了一种双注意力模块化信息融合神经网络,用于在多种场景下直接从RGB图像中恢复天然牙齿和陶瓷的光谱反射率。通过一个具有复杂照明条件的自行设计的光学系统构建了一个包含4000个RGB-高光谱图像对的数据集。结果证实,所提出的框架在预测牙齿光谱反射率方面表现出有效性能,均方误差为0.0024,结构相似性指数为0.8724。该方法实现了高精度的颜色测量,同时避免了由同色异谱引起的颜色不匹配,为包括光学特性表征、三维表面重建和计算机辅助修复设计在内的各种先进应用提供了支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d4/12430882/d8ef1b416969/sensors-25-05443-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验