Zhou Han, Lian Yusheng, Li Jin, Cao Xuheng, Ma Chao
J Opt Soc Am A Opt Image Sci Vis. 2025 Feb 1;42(2):139-150. doi: 10.1364/JOSAA.541847.
Compared with traditional hyperspectral imaging, computational spectral imaging (CSI) has the advantage of snapshot imaging with high spatial and temporal resolution, which has attracted considerable attention. The core challenge of CSI is to achieve computational imaging reconstruction from a single 2D measurement image to the corresponding 3D spatial-hyperspectral image (HSI). Existing reconstruction methods still face problems in exploring spatial-spectral cross correlation, leading to significant spatial-spectral distortion. Furthermore, due to neglect of multi-scale feature reconstruction, their reconstruction quality still needs to be improved. In this paper, to solve the above problems, we propose a spatial-spectral cross-attention-driven network (SSCA-DN). In SSCA, a proposed multi-scale feature aggregation (MFA) module and a spectral-wise transformer (SpeT) are used for multi-scale spatial feature reconstruction and long-range spectral feature reconstruction, respectively. Using spatial attention and spectral attention to interactively guide the reconstruction of the target HSI in spectral and spatial dimensions, the proposed SSCA models spatial-spectral cross correlation with considering multi-scale features. Using the SSCA as a basic module, a novel SSCA-DN network is constructed, in which a proposed supervised preliminary reconstruction subnetwork (SPRNet) learns the generalized prior, and a proposed unsupervised multi-scale feature fusion and refinement subnetwork (UMFFRNet) learns the specific prior. The SSCA module ensures that the learned generalized and specific priors can capture the spatial-spectral cross correlation while considering multi-scale features. In addition, in UMFFRNet, driven by MFA and SSCA, a novel multi-scale fusion and refinement mechanism for multi-level adjacent features is proposed to effectively model the correlation between adjacent level features and the multi-scale spatial-spectral cross correlation, which further improves the reconstruction accuracy. Extensive experiments show that our method achieves state-of-the-art performance on both simulated and real datasets.
与传统高光谱成像相比,计算光谱成像(CSI)具有快照成像的优势,能够实现高空间和时间分辨率,这引起了广泛关注。CSI的核心挑战在于从单个二维测量图像实现到相应三维空间高光谱图像(HSI)的计算成像重建。现有的重建方法在探索空间-光谱交叉相关性方面仍面临问题,导致显著的空间-光谱失真。此外,由于忽视了多尺度特征重建,它们的重建质量仍有待提高。在本文中,为了解决上述问题,我们提出了一种空间-光谱交叉注意力驱动网络(SSCA-DN)。在SSCA中,所提出的多尺度特征聚合(MFA)模块和光谱维度变换器(SpeT)分别用于多尺度空间特征重建和长距离光谱特征重建。利用空间注意力和光谱注意力在光谱和空间维度上交互式地指导目标HSI的重建,所提出的SSCA在考虑多尺度特征的情况下对空间-光谱交叉相关性进行建模。以SSCA作为基本模块,构建了一种新颖的SSCA-DN网络,其中所提出的监督初步重建子网(SPRNet)学习广义先验,所提出的无监督多尺度特征融合与细化子网(UMFFRNet)学习特定先验。SSCA模块确保所学习到的广义和特定先验能够在考虑多尺度特征的同时捕获空间-光谱交叉相关性。此外,在UMFFRNet中,在MFA和SSCA的驱动下,提出了一种新颖的多级相邻特征多尺度融合与细化机制,以有效建模相邻层级特征之间的相关性以及多尺度空间-光谱交叉相关性,进一步提高了重建精度。大量实验表明,我们的方法在模拟数据集和真实数据集上均取得了领先的性能。