Yang Mengke, Xu Chunbo, Yan Min
School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China.
School of Information and Control Engineering, Jilin University of Chemical Technology, Jilin 132000, China.
Sensors (Basel). 2025 Sep 3;25(17):5456. doi: 10.3390/s25175456.
This article introduces a novel decentralized compliance control technique designed to manage the behavior of multi-axle heavy vehicles equipped with electro-hydraulic actuator suspension systems on uneven terrains. To address the challenges of controller design complexity and network communication burden in large-scale active suspension systems for multi-axle heavy vehicles, the decentralized scheme proposed in this paper decomposes the overall vehicle control problem into decentralized compliance control tasks for multiple electro-hydraulic actuator suspension subsystems (MEHASS), each responding to road disturbances. The position-based compliance control strategy consists of an outer-loop generalized impedance controller (GIC) and an inner-loop position controller. The GIC, which offers explicit force-tracking performance, is employed to define the dynamic interaction between each wheel and the uneven road surface, thereby generating the vertical trajectory for the MEHASS. This design effectively reduces vertical vibration transmission to the vehicle chassis, improving ride comfort. To handle external disturbances and enhance control accuracy, the position control employs a nonsingular fast integral terminal sliding mode controller. Furthermore, a three-axle heavy vehicle prototype with electro-hydraulic actuator suspension is developed for on-road driving experiments. The effectiveness of the proposed control method in enhancing ride comfort is demonstrated through comparative experiments.
本文介绍了一种新颖的分散式合规控制技术,旨在管理配备电动液压执行器悬架系统的多轴重型车辆在不平地形上的行驶行为。为应对多轴重型车辆大型主动悬架系统中控制器设计复杂性和网络通信负担的挑战,本文提出的分散式方案将整车控制问题分解为多个电动液压执行器悬架子系统(MEHASS)的分散式合规控制任务,每个子系统应对道路干扰。基于位置的合规控制策略由外环广义阻抗控制器(GIC)和内环位置控制器组成。GIC具有明确的力跟踪性能,用于定义每个车轮与不平路面之间的动态相互作用,从而为MEHASS生成垂直轨迹。这种设计有效地减少了垂直振动传递到车辆底盘,提高了乘坐舒适性。为处理外部干扰并提高控制精度,位置控制采用非奇异快速积分终端滑模控制器。此外,还开发了一种配备电动液压执行器悬架的三轴重型车辆原型用于道路行驶实验。通过对比实验证明了所提出控制方法在提高乘坐舒适性方面的有效性。