Suppr超能文献

FewMedical-XJAU:用于细粒度药用植物分类的具有挑战性的基准。

FewMedical-XJAU: A Challenging Benchmark for Fine-Grained Medicinal Plant Classification.

作者信息

Zhang Tao, Huang Sheng, Kezierbieke Gulimila, Halimu Yeerjiang, Li Hui

机构信息

College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China.

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.

出版信息

Sensors (Basel). 2025 Sep 4;25(17):5499. doi: 10.3390/s25175499.

Abstract

Fine-grained plant image classification (FPIC) aims to distinguish plant species with subtle visual differences, but existing datasets often suffer from limited category diversity, homogeneous backgrounds, and insufficient environmental variation, limiting their effectiveness in complex real-world scenarios. To address these challenges, a novel dataset, FewMedical-XJAU, is presented, focusing on rare medicinal plants native to Xinjiang, China. This dataset offers higher intra-class variability, more complex and diverse natural backgrounds, varied shooting angles and lighting conditions, and more rigorous expert annotations, providing a realistic testbed for FPIC tasks. Building on this, an improved method called BDCC (Bilinear Deep Cross-modal Composition) is proposed, which incorporates textual priors into a deep metric learning framework to enhance semantic discrimination. A Class-Aware Structured Text Prompt Construction strategy is introduced to improve the model's semantic understanding, along with a dynamic fusion mechanism to address high inter-class similarity and intra-class variability. In few-shot classification experiments, the method demonstrates superior accuracy and robustness under complex environmental conditions, offering strong support for practical applications of fine-grained classification.

摘要

细粒度植物图像分类(FPIC)旨在区分视觉差异细微的植物物种,但现有数据集往往存在类别多样性有限、背景同质化以及环境变化不足等问题,限制了它们在复杂现实场景中的有效性。为应对这些挑战,提出了一个新颖的数据集FewMedical-XJAU,该数据集聚焦于中国新疆本土的珍稀药用植物。此数据集具有更高的类内变异性、更复杂多样的自然背景、不同的拍摄角度和光照条件以及更严格的专家注释,为FPIC任务提供了一个现实的测试平台。在此基础上,提出了一种名为BDCC(双线性深度跨模态合成)的改进方法,该方法将文本先验知识纳入深度度量学习框架以增强语义辨别能力。引入了一种类别感知结构化文本提示构建策略来提高模型的语义理解能力,同时还引入了一种动态融合机制来处理高类间相似度和类内变异性。在少样本分类实验中,该方法在复杂环境条件下展现出卓越的准确性和鲁棒性,为细粒度分类的实际应用提供了有力支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c686/12431608/703abcd9800c/sensors-25-05499-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验