Suppr超能文献

α-1抗胰蛋白酶缺乏症的下一代再生疗法:从分子发病机制到临床转化

Next-Generation Regenerative Therapies for Alpha-1 Antitrypsin Deficiency: Molecular Pathogenesis to Clinical Translation.

作者信息

Yang Se-Ran, Kim Hyung-Ryong

机构信息

Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.

Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.

出版信息

Int J Mol Sci. 2025 Sep 1;26(17):8504. doi: 10.3390/ijms26178504.

Abstract

Alpha-1 antitrypsin deficiency (AATD) represents a paradigmatic genetic disorder with well-characterized hepatic manifestations but relatively underexplored pulmonary implications. While liver involvement has been extensively reviewed, the underlying mechanisms of lung disease progression remain poorly understood, particularly regarding immunological pathways and inflammatory processes. The pathophysiology involves defective alpha-1 antitrypsin (AAT) production, including AAT variants that induce neutrophil elastase activity, causing progressive alveolar destruction and sustained inflammation, leading to emphysema, as one of the main components of chronic obstructive pulmonary disease (COPD). AATD and smoking represent major risk factors for COPD, the third leading cause of death worldwide at present. In AATD patients, neutrophils, which constitute the majority of circulating leukocytes, become dysregulated. Under normal conditions, cells perform essential functions, including phagocytosis and neutrophil extracellular trap formation (NETosis); in AATD, however, they accumulate excessively in alveolar spaces due to impaired elastase control. The accumulation of Z-AAT polymers within epithelial cells creates a pathological cycle, acting as chemoattractants that sustain pro-inflammatory responses and contribute to chronic obstructive pulmonary disease development. In addition, monocytes, representing a smaller fraction of leukocytes, migrate to inflammatory sites and differentiate into macrophages while secreting AAT with anti-inflammatory properties. However, in PiZZ patients, this protective mechanism fails, as polymer accumulation within cells reduces both AAT secretion and the number of protective human leukocyte antigen(HLA)-DR-monocyte subsets. In particular, macrophages demonstrate remarkable plasticity, switching between pro-inflammatory M1 (classically activated macrophages) and tissue-repairing M2 (alternatively activated macrophages) phenotypes based on environmental cues. In AATD, this adaptive capability becomes compromised due to intracellular polymer accumulation, leading to impaired phagocytic function and dysregulated cytokine production and ultimately perpetuating chronic inflammation and progressive tissue damage. Recent advances in induced pluripotent stem cell (iPSC) technology have facilitated alveolar epithelial cell (AEC) generation, in addition to the correction of AATD mutations through gene editing systems. Despite the limitations of AAT correction, iPSC-derived organoid models harboring AATD mutations can deliver important insights into disease pathophysiology, while gene editing approaches help demonstrate causality between specific mutations and observed phenotypes. Therefore, in this review, we investigated recent studies that can serve as tools for gene editing and drug development based on recently developed iPSC-related technologies to understand the pathogenesis of AATD.

摘要

α-1抗胰蛋白酶缺乏症(AATD)是一种典型的遗传性疾病,其肝脏表现已得到充分研究,但肺部影响相对研究不足。虽然肝脏受累情况已被广泛综述,但肺部疾病进展的潜在机制仍知之甚少,尤其是在免疫途径和炎症过程方面。其病理生理学涉及α-1抗胰蛋白酶(AAT)产生缺陷,包括诱导中性粒细胞弹性蛋白酶活性的AAT变体,导致肺泡进行性破坏和持续炎症,进而发展为肺气肿,这是慢性阻塞性肺疾病(COPD)的主要组成部分之一。AATD和吸烟是COPD的主要危险因素,COPD是目前全球第三大死因。在AATD患者中,占循环白细胞大多数的中性粒细胞出现功能失调。在正常情况下,这些细胞执行基本功能,包括吞噬作用和中性粒细胞胞外陷阱形成(NETosis);然而,在AATD中,由于弹性蛋白酶控制受损,它们在肺泡空间中过度积聚。Z-AAT聚合物在上皮细胞内的积累形成了一个病理循环,作为趋化因子维持促炎反应并促进慢性阻塞性肺疾病的发展。此外,占白细胞比例较小的单核细胞迁移到炎症部位并分化为巨噬细胞,同时分泌具有抗炎特性的AAT。然而,在PiZZ患者中,这种保护机制失效,因为细胞内聚合物的积累减少了AAT的分泌以及保护性人类白细胞抗原(HLA)-DR-单核细胞亚群的数量。特别是,巨噬细胞表现出显著的可塑性,根据环境线索在促炎M1(经典激活的巨噬细胞)和组织修复M2(交替激活的巨噬细胞)表型之间转换。在AATD中,这种适应能力因细胞内聚合物积累而受损,导致吞噬功能受损和细胞因子产生失调,最终使慢性炎症和组织渐进性损伤持续存在。诱导多能干细胞(iPSC)技术的最新进展促进了肺泡上皮细胞(AEC)的生成,此外还通过基因编辑系统纠正了AATD突变。尽管AAT纠正存在局限性,但携带AATD突变的iPSC衍生类器官模型可以为疾病病理生理学提供重要见解,而基因编辑方法有助于证明特定突变与观察到的表型之间的因果关系。因此,在本综述中,我们研究了基于最近开发的与iPSC相关技术的最新研究,这些研究可作为基因编辑和药物开发的工具,以了解AATD的发病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b03b/12429386/53d03c564403/ijms-26-08504-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验