Suppr超能文献

利用胸部CT的机器学习对青少年气胸复发进行视觉和预测性评估

Visual and Predictive Assessment of Pneumothorax Recurrence in Adolescents Using Machine Learning on Chest CT.

作者信息

Hyun Kwanyong, Kim Jae Jun, Im Kyong Shil, Han Sang Chul, Ryu Jeong Hwan

机构信息

Department of Thoracic and Cardiovascular Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

Department of Thoracic and Cardiovascular Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

出版信息

J Clin Med. 2025 Aug 23;14(17):5956. doi: 10.3390/jcm14175956.

Abstract

Spontaneous pneumothorax (SP) in adolescents has a high recurrence risk, particularly without surgical treatment. This study aimed to predict recurrence using machine learning (ML) algorithms applied to chest computed tomography (CT) and to visualize CT features associated with recurrence. We retrospectively reviewed 299 adolescents with conservatively managed SP from January 2018 to December 2022. Clinical risk factors were statistically analyzed. Chest CT images were evaluated using ML models, with performance assessed by AUC, accuracy, precision, recall, and F1 score. Gradient-weighted Class Activation Mapping (Grad-CAM) was used for visual interpretation. Among 164 right-sided and 135 left-sided SP cases, recurrence occurred in 54 and 43 cases, respectively. Mean recurrence intervals were 10.5 ± 9.9 months (right) and 12.7 ± 9.1 months (left). Presence of blebs or bullae was significantly associated with recurrence ( < 0.001). Neural networks achieved the best performance (AUC: 0.970 right, 0.958 left). Grad-CAM confirmed the role of blebs/bullae and highlighted apical lung regions in recurrence, even in their absence. ML algorithms applied to chest CT demonstrate high accuracy in predicting SP recurrence in adolescents. Visual analyses support the clinical relevance of blebs/bullae and suggest a key role of apical lung regions in recurrence, even when blebs/bullae are absent.

摘要

青少年自发性气胸(SP)复发风险较高,尤其是未经手术治疗的情况下。本研究旨在运用机器学习(ML)算法,通过胸部计算机断层扫描(CT)预测复发情况,并可视化与复发相关的CT特征。我们回顾性分析了2018年1月至2022年12月期间299例接受保守治疗的青少年SP患者。对临床风险因素进行了统计学分析。使用ML模型评估胸部CT图像,通过曲线下面积(AUC)、准确率、精确率、召回率和F1分数评估模型性能。采用梯度加权类激活映射(Grad-CAM)进行可视化解读。在164例右侧SP和135例左侧SP病例中,分别有54例和43例复发。平均复发间隔时间分别为右侧10.5±9.9个月和左侧12.7±9.1个月。肺大疱或肺气囊的存在与复发显著相关(<0.001)。神经网络表现最佳(AUC:右侧0.970,左侧0.958)。Grad-CAM证实了肺大疱/肺气囊的作用,并突出了复发时肺尖区域的作用,即使在其不存在时也是如此。应用于胸部CT的ML算法在预测青少年SP复发方面具有较高的准确性。可视化分析支持了肺大疱/肺气囊的临床相关性,并表明即使在没有肺大疱/肺气囊的情况下,肺尖区域在复发中也起着关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a66f/12428816/139e346fd9fe/jcm-14-05956-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验