Wang Yiming, Zheng Xiangjun, Wu Yifan, Zhu Huanzheng, Li Qiang, Jiang Tengyao, Lu Yanghua, Jen Alex K-Y, Chen Hongzheng, Zuo Lijian
State Key Laboratory of Silicon and Advanced Semiconductor Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China.
Adv Mater. 2025 Sep 13:e14266. doi: 10.1002/adma.202514266.
Semitransparent photovoltaics (STPV) show great potential for building integration, but the imbalance between visible light transmission and power generation limits their practical applications. To overcome this, a reflective STPV (R-STPV) structure is proposed, via utilizing a dual-surface reflection optical path to achieve equivalent transmission. Unlike STPV systems relying on transmission optical paths, this design bypasses reflection losses and alleviates the stringent selective absorption requirements for the active layer. Thus, such design enables the fabrication of wavelength-selective STPVs using various high-performance photovoltaic materials such as silicon, CIGS, and CdTe. As a proof-of-concept, an optical reflector is designed to selectively reflect visible light and transmit the invisible one, and by integrating it with the above PVs, we demonstrate high-performance R-STPV with appropriate optical geometry. Remarkably, the best Si-based R-STPV delivers a reliable efficiency of 14.4%, an average visible light transmittance of 92.2%, a record light utilization efficiency of 13.28% and an exceptional color rendering index of 99%. The versatility of R-STPV window technology makes it suitable for various building-integration application scenarios, and an average annual power generation of 69.8 kWh year m is obtained according to the simulation results. Therefore, this work paves a new path for high-performance solar windows that will contribute significantly to energy sustainability.
半透明光伏(STPV)在建筑一体化方面展现出巨大潜力,但可见光透射率与发电能力之间的失衡限制了它们的实际应用。为克服这一问题,提出了一种反射型STPV(R-STPV)结构,其借助双表面反射光路实现等效透射。与依赖透射光路的STPV系统不同,这种设计绕过了反射损耗,并减轻了对有源层严格的选择性吸收要求。因此,这种设计能够使用各种高性能光伏材料(如硅、铜铟镓硒和碲化镉)制造波长选择性STPV。作为概念验证,设计了一种光学反射器,用于选择性反射可见光并透射不可见光,通过将其与上述光伏材料集成,我们展示了具有合适光学几何结构的高性能R-STPV。值得注意的是,最佳的基于硅的R-STPV实现了14.4%的可靠效率、92.2%的平均可见光透射率、13.28%的创纪录光利用效率以及99的优异显色指数。R-STPV窗户技术的多功能性使其适用于各种建筑一体化应用场景,根据模拟结果,每年每平方米可获得69.8千瓦时的平均发电量。因此,这项工作为高性能太阳能窗户开辟了一条新路径,将对能源可持续性做出重大贡献。