Luo Lan-Xi, Li Wen-Guang, Liu Zheng-Tang, Ren Juan
School of Sciences, Xi'an Technological University, Xi'an, 710021, People's Republic of China.
Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
J Mol Model. 2025 Sep 13;31(10):268. doi: 10.1007/s00894-025-06496-4.
Through first-principles calculations, we comprehensively elucidate the non-monotonic variation of the superconducting transition temperature (T) of phosphorus (P) over 0-400 GPa. By comparing structural distortions, elastic modulus softening, and the evolution of electronic density of states across pressure phases, alongside electron-phonon coupling analysis, we ascertain that at 80 GPa, a layer phase transition triggers low-frequency phonon softening and resonance with the p-orbital van Hove singularity, culminating in a T of 18.3 K. With increasing pressure, systematic hardening of the phonon spectrum reduces the electron-phonon coupling constant (λ). Consequently, at 400 GPa, T sharply decreases to 3.5 K. The T fluctuation primarily stems from the interplay between λ and TDOS near the Fermi level. This discovery offers new opportunities for exploring high-pressure superconductor characteristics and enhances understanding of electronic structure-lattice dynamics interplay under extreme conditions.
Electronic properties were computed using density functional theory (DFT) in CASTEP; the exchange-correlation interaction is described using the PBE functional within the generalized gradient approximation (GGA). Electron-phonon coupling and superconducting properties were calculated using QUANTUM ESPRESSO with optimized norm-conserving Vanderbilt pseudopotentials (ONCVPSP).
通过第一性原理计算,我们全面阐明了磷(P)在0至400吉帕斯卡压力下超导转变温度(Tc)的非单调变化。通过比较结构畸变、弹性模量软化以及各压力相下电子态密度的演变,并结合电子-声子耦合分析,我们确定在80吉帕斯卡时,层相转变引发低频声子软化并与p轨道范霍夫奇点共振,最终导致Tc为18.3开尔文。随着压力增加,声子谱的系统性硬化降低了电子-声子耦合常数(λ)。因此,在400吉帕斯卡时,Tc急剧降至3.5开尔文。Tc的波动主要源于费米能级附近λ与态密度(TDOS)之间的相互作用。这一发现为探索高压超导体特性提供了新机会,并增进了对极端条件下电子结构-晶格动力学相互作用的理解。
使用CASTEP中的密度泛函理论(DFT)计算电子性质;在广义梯度近似(GGA)下使用PBE泛函描述交换-相关相互作用。使用QUANTUM ESPRESSO和优化的守恒规范范德瓦尔斯赝势(ONCVPSP)计算电子-声子耦合和超导性质。