Guo Cao, Wang Feng, Abdukayum Abdukader, Chen Qingde, Chang Fengqin, Li Hongyi, An Xuguang, Hu Guangzhi, Ma Yujie
Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, China.
Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
Adv Sci (Weinh). 2025 Sep 14:e09698. doi: 10.1002/advs.202509698.
Breaking the symmetric structure of active centers to adjust their electronic structure is a promising strategy for improving the performance of single-atom catalysts (SACs) in electrocatalytic carbon dioxide (CO) reduction (ECR). However, it remains highly challenging to achieve precise regulation and fine-tuning of single-atom sites at the atomic level. Here, by introducing S and Cl atoms, a Zn-SAC (ZnNSCl/C) with coupled axial and asymmetric coordination is successfully constructed, thereby enhancing the ECR performance. In situ attenuated total reflection infrared spectroscopy demonstrates that ZnNSCl/C promotes the formation of COOH and the desorption of CO species. Theoretical calculations show that the asymmetric coordination of S and the axial coordination of Cl can lead to the electron redistribution near the single Zn sites, increasing the overlap between the Zn (3d) and COOH (2p) orbitals. This enhances the adsorption strength of COOH on the Zn site and reduces the desorption energy of CO, thus facilitating catalytic performance. Therefore, the ZnNSCl/C catalyst achieves a CO faradaic efficiency of ≈100% in an H-cell, with excellent long-term stability of 240 h. This work may pave the way for the development of efficient ECR catalysts via fine manipulation of asymmetric and electronic structures of single-atom metal sites.
打破活性中心的对称结构以调整其电子结构是提高单原子催化剂(SACs)在电催化二氧化碳(CO₂)还原(ECR)中性能的一种有前景的策略。然而,在原子水平上实现单原子位点的精确调控和微调仍然极具挑战性。在此,通过引入S和Cl原子,成功构建了具有轴向和不对称耦合配位的Zn-SAC(ZnNSCl/C),从而提升了ECR性能。原位衰减全反射红外光谱表明,ZnNSCl/C促进了COOH的形成以及CO物种的脱附。理论计算表明,S的不对称配位和Cl的轴向配位可导致单个Zn位点附近的电子重新分布,增加Zn(3d)和COOH(2p)轨道之间的重叠。这增强了COOH在Zn位点上的吸附强度,并降低了CO的脱附能,从而促进了催化性能。因此,ZnNSCl/C催化剂在H型电解槽中实现了约100%的CO法拉第效率,具有240小时的优异长期稳定性。这项工作可能为通过精细调控单原子金属位点的不对称和电子结构来开发高效ECR催化剂铺平道路。