Suppr超能文献

Diagnostic Value of Dual Energy Technology of Dual Source CT in Differentiation Grade of Colorectal Cancer.

作者信息

Yadav Sudhir K, Deng Nan, Ma Jikong, Liu Yixin, Zhang Chunmei, Liu Ling

机构信息

Department of Radiology, The First Affiliated Hospital of Dali University, Dali 671000, China.

Department of Ultrasound Medicine, The Second Affiliated Hospital of Chengdu Medical College, 416 Hospital of Nuclear Industry, Sichuan, Chengdu, China.

出版信息

Curr Med Imaging. 2025 Sep 9. doi: 10.2174/0115734056360004250828115402.

Abstract

INTRODUCTION

Colorectal cancer (CRC) is a leading cause of cancer-related morbidity and mortality. Accurate differentiation of tumor grade is crucial for prognosis and treatment planning. This study aimed to evaluate the diagnostic value of dual-source CT dual-energy technology parameters in distinguishing CRC differentiation grades.

METHODS

A retrospective analysis was conducted on 87 surgically and pathologically confirmed CRC patients (64 with medium-high differentiation and 23 with low differentiation) who underwent dual-source CT dual-energy enhancement scanning. Normalized iodine concentration (NIC), spectral curve slope (K), and dual-energy index (DEI) of the tumor center were measured in arterial and venous phases. Differences in these parameters between differentiation groups were compared, and ROC curve analysis was performed to assess diagnostic efficacy.

RESULTS

The low-differentiation group exhibited significantly higher NIC, K, and DEI values in both arterial and venous phases compared to the mediumhigh differentiation group (P < 0.01). In the arterial phase, NIC, K, and DEI yielded AUC values of 0.920, 0.770, and 0.903, respectively, with sensitivities of 95.7%, 65.2%, and 91.3%, and specificities of 82.8%, 75.0%, and 75.0%, respectively. In the venous phase, AUC values were 0.874, 0.837, and 0.886, with sensitivities of 91.3%, 82.6%, and 91.3%, and specificities of 68.75%, 75.0%, and 73.4%. NIC in the arterial phase showed statistically superior diagnostic performance compared to K values (P < 0.05).

DISCUSSION

Dual-energy CT parameters, particularly NIC in the arterial phase, demonstrate high diagnostic accuracy in differentiating CRC grades. These findings suggest that quantitative dual-energy CT metrics can serve as valuable non-invasive tools for tumor characterization, aiding in clinical decision-making. Study limitations include its retrospective design and relatively small sample size.

CONCLUSION

NIC, K, and DEI values in dual-energy CT scans are highly effective in distinguishing CRC differentiation grades, with arterial-phase NIC showing the highest diagnostic performance. These parameters may enhance preoperative assessment and personalized treatment strategies for CRC patients.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验