Suppr超能文献

双能量谱CT在鉴别T1期肺腺癌病理分级中的价值。

The value of dual-energy spectral CT in differentiating the pathological grades of T1-size lung adenocarcinoma.

作者信息

Yu Jingwen, Zhong Yihong, Wang Yunfei, Zhang Yan, Wang Xiaoliang, Yang Qian, Ma Kun, Luo Dehong, Liu Zhou

机构信息

Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

出版信息

J Thorac Dis. 2025 Jul 31;17(7):4858-4871. doi: 10.21037/jtd-2025-516. Epub 2025 Jul 27.

Abstract

BACKGROUND

Accurate preoperative diagnosis of pathological grades in T1-sized lung adenocarcinoma (LUAD) is crucial for clinical decision-making. The study aimed to investigate the value of dual-energy computed tomography (DECT) in distinguishing pathological grades in newly diagnosed LUAD lesions ≤3 cm in size.

METHODS

From October 2018 to January 2022, 137 patients with 161 pathologically confirmed LUAD lesions (≤3 cm) having received DECT were retrospectively enrolled with clinical information collected (low-grade: high-grade =41:120). CT values of monochromatic images at 40-140 keV, effective atomic number (Z), and iodine concentration of lesion (IC) on plain, arterial phase (AP), and venous phase (VP) images were measured. Iodine concentration difference (ICD), normalized iodine concentration (NIC), and slope of the spectral curve (λ) were further calculated. Difference tests and multiple stepwise regression were utilized to predict grades. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic efficacy of the clinical model, spectral model, and combined model.

RESULTS

There were significant differences in CT values of 40-140 keV and Z between these two groups for the plain, AP, and VP images (all P<0.001), but not in IC, ICD, NIC, and λ (all P>0.05). Stepwise regression showed that CT on plain spectral CT, CT on AP, and CT on VP are independently significant factors. The combined model achieved the best performance [area under the curve (AUC) =0.825], which significantly outperformed the clinical model (AUC =0.772, P=0.03), but not the spectral CT model (AUC =0.774, P=0.07).

CONCLUSIONS

In addition to clinical features, single-energy CT values hold the potential to differentiate the pathological grade of T1-size LUAD.

摘要

背景

准确术前诊断T1期肺腺癌(LUAD)的病理分级对临床决策至关重要。本研究旨在探讨双能计算机断层扫描(DECT)在鉴别新诊断的大小≤3 cm的LUAD病变病理分级中的价值。

方法

回顾性纳入2018年10月至2022年1月期间137例经病理证实的LUAD病变(≤3 cm)且接受了DECT检查的患者,并收集临床信息(低级别:高级别=41:120)。测量平扫、动脉期(AP)和静脉期(VP)图像上40-140 keV单色图像的CT值、有效原子序数(Z)以及病变的碘浓度(IC)。进一步计算碘浓度差(ICD)、归一化碘浓度(NIC)和光谱曲线斜率(λ)。采用差异检验和多元逐步回归来预测分级。采用受试者操作特征(ROC)分析评估临床模型、光谱模型和联合模型的诊断效能。

结果

两组在平扫、AP和VP图像上40-140 keV的CT值和Z存在显著差异(均P<0.001),但在IC、ICD、NIC和λ方面无显著差异(均P>0.05)。逐步回归显示,平扫光谱CT上的CT、AP上的CT和VP上的CT是独立的显著因素。联合模型表现最佳[曲线下面积(AUC)=0.825],显著优于临床模型(AUC =0.772,P=0.03),但不优于光谱CT模型(AUC =0.774,P=0.07)。

结论

除临床特征外,单能CT值有潜力区分T1期LUAD的病理分级。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验