Wang Xinan, Chu Wenhui, Du Fuyu, Fan Hongyu, Ye Zixuan, Xue Yaru, Zhang Xianghan, Yang Peng, Xia Yuqiong, Chen Zhihui, Ning Pengbo
School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, PR China.
Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710071, Shaanxi, PR China.
Mater Today Bio. 2025 Apr 22;32:101784. doi: 10.1016/j.mtbio.2025.101784. eCollection 2025 Jun.
Metastatic breast cancer poses a formidable challenge to global female health and public hygiene. Patients with HER2 breast cancer typically demonstrate higher mortality rates and rapid recurrences. Despite the notable advantages in high effectiveness and precision for HER2 cancer therapy, ADCs (Antibody-Drug Conjugates) still face limitations in rapid metabolism and off-target toxicity . Recently, biomimetic cell membranes camouflaged nanocarriers exhibits remarkable capabilities in immune escape, extended drug circulation in the bloodstream, and enhanced targeted accumulation at tumor sites. In response, PLGA nanoparticles with engineered modified macrophage membrane coating was designed to develop a novel gene reprogramming biomimetic drug-loading nanoplatform. The nanoplatform enabled anti-HER2 antibodies to be stably expressed on the macrophage membrane (HM), making it more effective against HER2 tumor cells, achieving precise targeted delivery of near-infrared (NIR) fluorescent dye IR780 or chemotherapy drugs GEM. When compared to nanoparticles coated with traditional macrophage membranes, GEM@PLGA@HM demonstrated outstanding HER2-targeting proficiency both and . Imaging studies conducted on small animals further verified the precise accumulation of GEM@PLGA@HM specifically within HER2 tumors. When combined with HER2 antibodies, GEM treatment exhibited a marked improvement in antitumor effects, both and . Notably, the combined therapy demonstrated a significant 14-fold increase in cytotoxicity against HER2 metastatic cancer cells (SK-OV-3) in comparison to GEM used alone, which was further proved mechanistically that GEM@PLGA@HM operated synergistically to hinder the progression and metastasis of HER2 tumors by triggering apoptosis and concurrently inhibiting the PI3K/AKT and MAPK signaling cascades. This biomimetic nanoplatform represents a powerful tool for targeted chemotherapeutic delivery and holds great promise for the treatment of HER2 primary and metastatic breast cancer.
转移性乳腺癌对全球女性健康和公共卫生构成了巨大挑战。HER2型乳腺癌患者通常死亡率较高且复发迅速。尽管ADC(抗体药物偶联物)在HER2癌症治疗方面具有高效性和精准性等显著优势,但仍面临快速代谢和脱靶毒性等局限性。近年来,仿生细胞膜伪装纳米载体在免疫逃逸、延长药物在血液中的循环时间以及增强在肿瘤部位的靶向积累方面展现出卓越能力。对此,设计了具有工程化修饰巨噬细胞膜包被的PLGA纳米颗粒,以开发一种新型的基因重编程仿生载药纳米平台。该纳米平台使抗HER2抗体能够在巨噬细胞膜(HM)上稳定表达,使其对HER2肿瘤细胞更有效,实现近红外(NIR)荧光染料IR780或化疗药物吉西他滨(GEM)的精准靶向递送。与传统巨噬细胞膜包被的纳米颗粒相比,GEM@PLGA@HM在体外和体内均表现出出色的HER2靶向能力。对小动物进行的成像研究进一步证实了GEM@PLGA@HM在HER2肿瘤内的精准积累。当与HER2抗体联合使用时,GEM治疗在体外和体内均显示出抗肿瘤效果的显著改善。值得注意的是,与单独使用GEM相比,联合治疗对HER2转移性癌细胞(SK-OV-3)的细胞毒性显著增加了14倍,这进一步从机制上证明GEM@PLGA@HM通过触发细胞凋亡并同时抑制PI3K/AKT和MAPK信号级联反应,协同发挥作用以阻碍HER2肿瘤的进展和转移。这种仿生纳米平台是靶向化疗递送的有力工具,在治疗HER2原发性和转移性乳腺癌方面具有巨大潜力。