Suppr超能文献

一个用于利用物联网项圈惯性测量单元(IMU)信号检测自由放牧牛行走、吃草和休息行为的数据集。

A dataset for detecting walking, grazing, and resting behaviors in free-grazing cattle using IoT collar IMU signals.

作者信息

Morales-Vargas David, Guarda-Vera Miguel, Iglesias-Quilodrán Daniel, Cancino-Baier David, Muñoz-Poblete Carlos

机构信息

Departamento de Ingeniería Eléctrica, Universidad de La Frontera, Temuco, Chile.

Magíster en Ciencias de la Ingeniería, Universidad de La Frontera, Temuco, Chile.

出版信息

Front Vet Sci. 2025 Aug 29;12:1630083. doi: 10.3389/fvets.2025.1630083. eCollection 2025.

Abstract

In this study, we developed a dataset of behaviors associated with lameness in dairy cows. The data collection utilized IoT collars that were placed around the necks of 10 dairy cows. This publicly available dataset contains 441 labeled behaviors, amounting to over 7 h of recording time. It includes acceleration data referenced in both body and world frames, as well as gyroscope signals, which facilitated the extraction of 112 relevant features for classifying key behaviors such as walking, grazing, and resting through machine learning algorithms. To enhance model performance and reduce feature dimensionality, automatic feature selection techniques were applied before classification. The dataset's effectiveness was assessed using various classification models, including Support Vector Machines (SVM), Logistic Regression, Decision Trees, and Random Forests. Results indicated that signals referenced to the body frame yielded better behavior discrimination, achieving a maximum macro F1-score of 0.9625 with the SVM model. This public dataset can facilitate early lameness detection by enabling accurate classification of behavior patterns.

摘要

在本研究中,我们开发了一个与奶牛跛行相关行为的数据集。数据收集使用了放置在10头奶牛脖子上的物联网项圈。这个公开可用的数据集包含441个标记行为,记录时间超过7小时。它包括以身体和世界坐标系为参考的加速度数据以及陀螺仪信号,这有助于通过机器学习算法提取112个相关特征,用于对行走、吃草和休息等关键行为进行分类。为了提高模型性能并降低特征维度,在分类前应用了自动特征选择技术。使用包括支持向量机(SVM)、逻辑回归、决策树和随机森林在内的各种分类模型评估了数据集的有效性。结果表明,以身体坐标系为参考的信号产生了更好的行为区分效果,使用SVM模型时最大宏F1分数达到0.9625。这个公共数据集可以通过实现行为模式的准确分类来促进跛行的早期检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2322/12426180/2be3f103d75d/fvets-12-1630083-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验