Mirzac Daniela, Glaser Martin B, Kreis Svenja L, Ringel Florian, Bange Manuel, Herz Damian M, Groppa StanislavA, Rotaru Lilia, Almeida Viviane, Blech Jenny, Oshaghi Mohammadsaleh, Kunz Sebastian, Klein Matthias, Paulsen Jonas, Luhmann Heiko J, Bopp Tobias, de Jager Philip L, Groppa Sergiu, Gonzalez-Escamilla Gabriel
Department of Neurology, Saarland University, Homburg, Germany.
Department of Neurology nr. 2, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.
Research (Wash D C). 2025 Sep 11;8:0863. doi: 10.34133/research.0863. eCollection 2025.
Abnormal brain oscillatory activity is a well-established hallmark of bradykinesia and motor impairment in Parkinson's disease (PD), yet its molecular underpinnings remain unclear. To address this gap, we analyzed over 100,000 single-cell RNA transcriptomes from fresh dorsolateral prefrontal cortex tissue of individuals with PD and non-PD controls, undergoing deep brain stimulation-2 cohorts, which open up an unprecedent window to the characterization of human cortical brain tissue, aiming to uncover the molecular mechanisms of abnormal brain oscillatory activity in PD. Fresh brain tissue samples offer a unique opportunity to precisely elucidate the molecular underpinnings of known, clinically relevant electrophysiological hallmarks of neurodegeneration, which can be used to inform targeted therapeutic strategies. We depicted in microglia and astrocytes enrichment of mitochondrial electron transport and oxidative phosphorylation pathways, which were directly linked to the increase of pathological brain activity and the decrease of prokinetic brain activity. Additionally, the abnormal phase-amplitude coupling of beta-gamma brain activity was related to the dysfunction of oligodendrocyte precursor cells and inflammasome activation mediated by lymphocyte-driven adaptive immunity. We identified a distinct set of dysregulated genes from the mitogen-activated protein kinase phosphorylation pathways, mitochondrial electron transport at the intersection of neuroinflammation and neurodegeneration, suggesting pivotal roles in PD pathology. This unique dataset provides unprecedented insights into the immune and metabolic dysregulation underlying PD, offering a mechanistic framework for understanding invasive transcriptomic biomarkers related to prokinetic and pathologic brain activity in PD.
异常的脑振荡活动是帕金森病(PD)中运动迟缓及运动障碍的一个公认特征,但其分子基础仍不清楚。为了填补这一空白,我们分析了来自PD患者和非PD对照个体新鲜背外侧前额叶皮质组织的超过10万个单细胞RNA转录组,这些样本来自两个接受深部脑刺激的队列,这为人类皮质脑组织的特征描述打开了一个前所未有的窗口,旨在揭示PD中异常脑振荡活动的分子机制。新鲜脑组织样本提供了一个独特的机会,能够精确阐明神经退行性变已知的、临床相关电生理特征的分子基础,这些基础可用于指导靶向治疗策略。我们在小胶质细胞和星形胶质细胞中描绘出线粒体电子传递和氧化磷酸化途径的富集,这些途径与病理性脑活动增加和促动性脑活动减少直接相关。此外,β-γ脑活动的异常相位-振幅耦合与少突胶质细胞前体细胞功能障碍以及淋巴细胞驱动的适应性免疫介导的炎性小体激活有关。我们从丝裂原活化蛋白激酶磷酸化途径、神经炎症和神经退行性变交叉点的线粒体电子传递中鉴定出一组不同的失调基因,表明它们在PD病理学中起关键作用。这个独特的数据集为PD潜在的免疫和代谢失调提供了前所未有的见解,为理解与PD中促动性和病理性脑活动相关的侵入性转录组生物标志物提供了一个机制框架。