Cuntín-Abal Carmen, Chávez Miriam, Jurado-Sánchez Beatriz, Escarpa Alberto
Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, Madrid E-28802, Spain.
Chemical Research Institute "Andres M. Del Río", Universidad de Alcala, Alcala de Henares, Madrid E-28871, Spain.
Chem Mater. 2025 Aug 19;37(17):6512-6521. doi: 10.1021/acs.chemmater.5c00885. eCollection 2025 Sep 9.
Bacterial infections represent a major threat that can cause millions of deaths worldwide, where bacterial species can colonize and grow into highly resistant biofilms. Autonomous micromotor propulsion can improve the overall efficiency of bacterial growth inhibition versus other static processes, leading to novel methods for bacterial treatment. Here, biotemplated magnetic and photocatalytic micromotors are synthesized using and as bacterial templates with different morphological features, such as shape and size, to obtain reproducible micromotors, followed by decoration with FeO nanoparticles for magnetic guidance into biofilms. Then, photoactive BiOCl crystals are grown on the micromotor surface for in situ photocatalytic generation of reactive oxygen species (ROS) for efficient bacterial growth inhibition. Thanks to their high photostability, @FeO@BiOCl micromotors enabled controlled and efficient ROS production under sterilization conditions by using 375 nm light to trigger an oxygen vacancy generation mechanism within a biocompatible, tailored 3D-printed electrochemical cell. The (photo)-electrochemical ROS generation correlated well with highly efficient bacterial growth inhibition, demonstrating the potential application of the collective dynamics of these multifunctional biotemplate-based micromotors. The concepts described here are promising for the development of future strategies against resistant bacteria by understanding the underlying processes behind them.
细菌感染是一种重大威胁,可在全球导致数百万例死亡,细菌物种能够在其中定殖并生长形成高度耐药的生物膜。与其他静态过程相比,自主微马达推进可提高细菌生长抑制的整体效率,从而带来新的细菌治疗方法。在此,以具有不同形态特征(如形状和大小)的细菌为模板,利用 和 合成生物模板化的磁性和光催化微马达,以获得可重复生产的微马达,随后用FeO纳米颗粒进行修饰,以便将其磁性引导至生物膜中。然后,在微马达表面生长光活性BiOCl晶体,用于原位光催化产生活性氧(ROS),以有效抑制细菌生长。由于其高光稳定性,@FeO@BiOCl微马达通过使用375 nm光触发生物相容性定制3D打印电化学电池内的氧空位生成机制,在灭菌条件下实现了可控且高效的ROS产生。(光)电化学ROS生成与高效的细菌生长抑制密切相关,证明了这些基于多功能生物模板的微马达集体动力学的潜在应用。通过理解其背后的潜在过程,这里描述的概念对于未来抗耐药细菌策略的开发很有前景。