Strangeway Robert J, Cao Hao, Orrill Eric, Caron Ryan P, Pierce David, Seaton Ryan, Gonzalez Henry H, Gurrola Enrique, Greer William, Leneman David, Lawson Michael J, Capistrano Vicente, Bushong Dean, Chen Jianxin, Russell Cynthia L, Wu Jiashu, Miles David M, Kletzing Craig A
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA USA.
Timoneer Aerospace LLC, Pheonix, AZ USA.
Space Sci Rev. 2025;221(6):84. doi: 10.1007/s11214-025-01212-3. Epub 2025 Sep 12.
The NASA Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) mission is a two-spacecraft mission designed to explore the temporal and spatial signatures of magnetic reconnection as observed at the low altitude dayside cusp. The instrumentation on each TRACERS spacecraft includes a three-axis vector fluxgate magnetometer (MAG). The MAG sensor design heritage is from Magnetospheric Multiscale (MMS), while the electronics heritage is from the InSight mission to Mars. Testing as part of the MAG instrument delivery verified that the MAG dynamic range exceeded ±60,000 nT with a resolution of ∼9 pT to provide margin. The fluxgate magnetometers have been calibrated on the ground, but as is typical for fluxgates they will be re-calibrated using on-orbit data. The TRACERS spacecraft are spinning spacecraft in an orbit at 590 km altitude. Absolute gains, orientation, and spin-axis offsets will be determined through comparison with the International Geomagnetic Reference Field (IGRF) with an underlying orbit-period cadence. Additionally, spin-tones allow determination of relative angular orientation and gain and spin-plane offsets at spin-period temporal resolution. To meet the TRACERS mission science objectives MAG will measure magnetic field perturbations from large scale field-aligned currents, and shorter scale Alfvén waves. The electromagnetic energy flux associated with these magnetic field perturbations has major impacts on particle acceleration along the flux tube and ionospheric heating through Joule dissipation. This conversion from electromagnetic to particle energy is a primary driver for the escape of ionospheric plasma into the magnetosphere, making this an important secondary science objective for the TRACERS mission.
美国国家航空航天局的串联重联与磁尖电动力学探测卫星(TRACERS)任务是一项双航天器任务,旨在探索在低海拔日侧磁尖观测到的磁重联的时间和空间特征。每颗TRACERS航天器上的仪器包括一个三轴矢量磁通门磁力计(MAG)。MAG传感器的设计传承自磁层多尺度(MMS)任务,而电子设备则传承自前往火星的洞察号任务。作为MAG仪器交付的一部分进行的测试验证了MAG的动态范围超过±60,000 nT,分辨率约为9 pT,以提供余量。磁通门磁力计已在地面进行校准,但与磁通门的典型情况一样,它们将使用在轨数据进行重新校准。TRACERS航天器是在590公里高度轨道上的自旋航天器。绝对增益、方向和自旋轴偏移将通过与国际地磁参考场(IGRF)进行比较来确定,基本轨道周期为节奏。此外,自旋音调允许以自旋周期时间分辨率确定相对角方向、增益和自旋平面偏移。为了实现TRACERS任务的科学目标,MAG将测量来自大规模场向电流和较短尺度阿尔文波的磁场扰动。与这些磁场扰动相关的电磁能量通量对沿通量管的粒子加速和通过焦耳耗散的电离层加热有重大影响。这种从电磁能到粒子能的转换是电离层等离子体逃逸到磁层的主要驱动力,使其成为TRACERS任务的一个重要次要科学目标。