Guy Jacky, Hein Elena, Alexander-Howden Bea, von Bock Und Polach Timur, Mathieson Tricia, Kleinstiver Benjamin P, Zoghbi Huda, Bird Adrian
University of Edinburgh, Institute of Cell Biology, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA.
bioRxiv. 2025 Sep 7:2025.08.31.673354. doi: 10.1101/2025.08.31.673354.
Mutations in the gene cause the severe neurological disorder Rett syndrome. A cluster of frameshift-causing C-terminal deletions (CTDs) lead to loss of ~100 amino acids at the C-terminus of the MeCP2 protein, and account for approximately 10% of RTT-causing mutations. The pathogenicity of C-terminal deletions (CTDs) is unexpected, as this C-terminal domain is non-essential in mice. Utilising databases of pathogenic and benign human mutations, we find that some individuals with apparently typical CTDs do not exhibit Rett syndrome, confirming that C-terminal truncations are not intrinsically pathogenic. Using human DNA sequence data and mouse models, we demonstrate that pathogenicity results from a drastic reduction in MeCP2 levels and is determined by the presence of the short amino acid motif proline-proline-stop (-PPX) at the C-terminus, which results from a shift to the +2 reading frame. Individuals with CTDs that shift to the +1 frame avoid this motif and do not develop Rett syndrome. Mutating the stop codon of the PPX motif to tryptophan rescues MeCP2 expression and RTT-like phenotypes in a CTD mouse model. Finally, we demonstrate that an adenine base editor can efficiently introduce this tryptophan substitution in cultured cells. Overall, our findings uncover a simple and reliable prognostic distinction between benign and pathogenic CTDs and provide proof-of-concept for an editing strategy that potentially corrects all disease-causing CTD mutations.
该基因的突变会导致严重的神经疾病雷特综合征。一系列导致移码的C末端缺失(CTD)会导致MeCP2蛋白C末端约100个氨基酸的缺失,约占导致雷特综合征突变的10%。C末端缺失(CTD)的致病性出人意料,因为该C末端结构域在小鼠中并非必需。利用人类致病和良性突变数据库,我们发现一些具有明显典型CTD的个体并未表现出雷特综合征,这证实C末端截短本身并不具有致病性。通过使用人类DNA序列数据和小鼠模型,我们证明致病性源于MeCP2水平的急剧降低,并且由C末端存在的短氨基酸基序脯氨酸 - 脯氨酸 - 终止(-PPX)决定,该基序是由移至 +2 阅读框导致的。移至 +1 框的CTD个体避免了该基序,不会发展为雷特综合征。在CTD小鼠模型中,将PPX基序的终止密码子突变为色氨酸可挽救MeCP2表达和类似雷特综合征的表型。最后,我们证明腺嘌呤碱基编辑器可以在培养细胞中有效引入这种色氨酸替代。总体而言,我们的研究结果揭示了良性和致病性CTD之间简单可靠的预后差异,并为一种可能纠正所有致病CTD突变的编辑策略提供了概念验证。