Tobita Caitlyn A, Banerjee Siddhartha, Roth Jonathan, Larson Emma K, Nikzad Abuzar, Naiyer Abdullah, Hoop Cody L, Baum Jean
Department of Chemistry & Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854.
Department of Heath Informatics, Rutgers, the State University of New Jersey, Newark, NJ, 07107-1709.
bioRxiv. 2025 Sep 4:2025.09.03.673992. doi: 10.1101/2025.09.03.673992.
Collagen is the most abundant structural protein in the human body, and its supramolecular organization is central to tissue mechanics and cell-matrix interactions. Integrins, key mediators of these interactions, are essential for key biological processes including adhesion, migration, differentiation, and platelet aggregation. While mutations in collagen are known to cause connective tissue disorders such as Osteogenesis Imperfecta (OI) with phenotypes ranging from mild to perinatal lethal, how these mutations alter fibril level architecture, dynamics and integrin-mediated interactions remains poorly understood. Here, we generated collagen-rich extra-cellular matrix (ECM) from primary dermal fibroblasts of a healthy donor (WT) and from two OI patients carrying distinct glycine mutations: G610C, associated with moderate disease, and G907D, linked to perinatal lethality. Comparative biophysical studies reveal that both mutants retain the canonical D-banding of collagen I fibrils but differ markedly at the nanoscale. G907D fibrils exhibit greater local structural perturbations and increased molecular mobility relative to the non-lethal G610C. Importantly, integrin binding also diverges between mutants: G610C displays reduced affinity, whereas G907D exhibits enhanced affinity compared to WT. Together, these findings establish a mechanistic link between single-residue mutations, nanoscale fibril architecture and collagen-receptor interactions, and highlight how genetic or acquired collagen defects can drive ECM dysregulation.
胶原蛋白是人体中含量最丰富的结构蛋白,其超分子结构对于组织力学和细胞与基质的相互作用至关重要。整合素是这些相互作用的关键介质,对于包括黏附、迁移、分化和血小板聚集在内的关键生物学过程必不可少。虽然已知胶原蛋白突变会导致诸如成骨不全症(OI)等结缔组织疾病,其表型从轻度到围产期致死不等,但这些突变如何改变原纤维水平的结构、动力学以及整合素介导的相互作用仍知之甚少。在此,我们从一名健康供体(WT)以及两名携带不同甘氨酸突变的OI患者的原代表皮成纤维细胞中生成了富含胶原蛋白的细胞外基质(ECM):与中度疾病相关的G610C和与围产期致死相关的G907D。比较生物物理研究表明,这两种突变体均保留了I型胶原原纤维的典型D带,但在纳米尺度上存在显著差异。相对于非致死性的G610C,G907D原纤维表现出更大的局部结构扰动和更高的分子流动性。重要的是,突变体之间的整合素结合也有所不同:与WT相比,G610C的亲和力降低,而G907D的亲和力增强。这些发现共同建立了单残基突变、纳米级原纤维结构与胶原受体相互作用之间的机制联系,并突出了遗传或获得性胶原蛋白缺陷如何导致细胞外基质失调。