Bi Qianwen, Zheng Fumin, Lu Ziqin, Sun Jia
Department of Rehabilitation Medicine, Zhejiang Hospital No. 12 Lingyin Road, Hangzhou 310000, Zhejiang, P. R. China.
School of Stomatology, Qingdao University No. 380 Ningxia Road, Qingdao 266000, Shandong, P. R. China.
Am J Transl Res. 2025 Aug 15;17(8):6347-6358. doi: 10.62347/YELM3779. eCollection 2025.
Bedsores (pressure ulcers) exhibit high incidence rates (0.4-38%) and prolonged recovery periods, with bacterial infections posing the most frequent and severe complications, significantly impeding wound healing. Conventional antibiotic therapies face limitations due to antimicrobial resistance, necessitating innovative strategies with enhanced biocompatibility and reduced resistance-inducing potential. This study aimed to develop a photodynamic therapy (PDT)-based antimicrobial approach by converting antimicrobial drugs into N-doped carbon quantum dots (N, CQ-dots) for efficient bacterial inhibition in wound environments.
N, CQ-dots were synthesized from protocatechuic acid (a natural antimicrobial metabolite) via solvothermal method, preserving critical functional groups (-COOH, -OH) inherited from the precursor. Structural and optical properties were characterized using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-to-visible (UV-Vis) spectroscopy. Photodynamic antimicrobial efficacy was evaluated against Staphylococcus aureus and Escherichia coli through colony-count assays, and live/dead staining.
The synthesized N, CQ-dots exhibited uniform morphology (~3.5 nm) and abundant oxygen-containing functional groups, as confirmed by XPS and Fourier Transform Infrared (FTIR) spectrometer analysis. Under irradiation, the material demonstrated potent antibacterial activity, achieving >99.9% viability reduction in Gram-positive and Gram-negative strains, with minimal cytotoxicity (MBC >100 μg/mL).
This work demonstrates a novel paradigm for transforming antimicrobial drugs into multifunctional N, CQ-dots, leveraging preserved pharmacophores and PDT mechanisms to overcome drug resistance. The system combines intrinsic antibacterial activity with light-triggered responsiveness, offering a promising solution for managing infected bedsores while minimizing systemic toxicity. These findings highlight the translational potential of drug-derived nanomaterials in precision wound care.
褥疮(压疮)发病率高(0.4 - 38%)且恢复期长,细菌感染是最常见且严重的并发症,严重阻碍伤口愈合。由于抗菌耐药性,传统抗生素疗法面临局限性,因此需要具有更高生物相容性和更低耐药诱导潜力的创新策略。本研究旨在通过将抗菌药物转化为氮掺杂碳量子点(N,CQ - 点),开发一种基于光动力疗法(PDT)的抗菌方法,以在伤口环境中有效抑制细菌。
通过溶剂热法由原儿茶酸(一种天然抗菌代谢物)合成N,CQ - 点,保留了从前体继承的关键官能团(-COOH,-OH)。使用透射电子显微镜(TEM)、X射线光电子能谱(XPS)和紫外 - 可见(UV - Vis)光谱对结构和光学性质进行表征。通过菌落计数试验和活/死染色评估对金黄色葡萄球菌和大肠杆菌的光动力抗菌效果。
如XPS和傅里叶变换红外(FTIR)光谱仪分析所证实,合成的N,CQ - 点呈现均匀形态(约3.5 nm)和丰富的含氧官能团。在光照下,该材料表现出强大的抗菌活性,革兰氏阳性和革兰氏阴性菌株的活力降低>99.9%,细胞毒性极小(MBC>100μg/mL)。
这项工作展示了一种将抗菌药物转化为多功能N,CQ - 点的新范例,利用保留的药效基团和PDT机制克服耐药性。该系统将内在抗菌活性与光触发响应性相结合,为管理感染性褥疮提供了一个有前景的解决方案,同时将全身毒性降至最低。这些发现突出了药物衍生纳米材料在精准伤口护理中的转化潜力。