Jana Sirsendu, Garbus-Grant Haley, Kassa Tigist, Alayash Abdu I
Laboratory of Biochemistry and Vascular Biology, Center for Biologic Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States.
Front Mol Biosci. 2025 Aug 28;12:1648209. doi: 10.3389/fmolb.2025.1648209. eCollection 2025.
Hemoglobin-based oxygen carriers (HBOCs) also known as blood substitutes were developed by chemical or genetic alterations of cell-free human or bovine Hbs to prolong the circulation time of Hb and to improve its ability to unload oxygen. However, toxicity and safety issues led to the termination of several clinical trials. The most persistent observation was the development of cardiac lesions after transfusion of some HBOCs in animal models. Oxidation of HBOCs in circulation, subsequent heme release and cellular uptake are thought to play an important role in the overall toxicity of HBOCs.
We examined the effects of different redox states, ferrous (Fe), ferric (Fe) and ferryl (Fe) of four different HBOCs on cardiomyocyte integrity and mitochondrial respiration. The HBOC formulations used in this study were two-human derived and two bovine-derived molecules. We analyzed cellular and subcellular impacts of these forms including mitochondrial electron transport chain (ETC.) complexes individually by measuring the enzymatic activities of Complex I, Complex II-III, and Complex IV.
The ferrous, and ferric forms of these HBOCs generally induced minimum lactate dehydrogenase (LDH) release from human cardiac myocytes (AC16). Meanwhile higher oxidation state, ferryl forms of all HBOCs generated substantial cell injury as measured by LDH levels. We examined the effects of these redox forms of HBOCs and their ability to impair bioenergetic function of cultured AC16 cells. The ferrous forms of HBOCs did not cause measurable impairment of mitochondrial ETC functions, whereas ferric non-functional versions of all the HBOCs caused a significant loss of Complex IV activity but not Complex I or II-III in those cardiac cell lines. On the other hand, complex I, II-III and IV activities were completely blunted by the ferryl forms of HBOCs.
This study for the first time investigated the impact of different chemical modifications on the redox activities of HBOCs towards mitochondrial complexes in cardiac myocytes. Higher oxidation ferryl states once formed trigger cellular and subcellular changes in cardiac myocytes. Our findings on the impact of HBOC redox states on mitochondrial function may therefore inform future design of alternative molecular entities to ensure safety and minimize toxicity.
基于血红蛋白的氧载体(HBOCs),也被称为血液替代品,是通过对无细胞的人或牛血红蛋白进行化学或基因改造而开发出来的,目的是延长血红蛋白的循环时间并提高其释放氧气的能力。然而,毒性和安全性问题导致了几项临床试验的终止。最持续出现的观察结果是在动物模型中输注某些HBOCs后出现心脏病变。循环中HBOCs的氧化、随后的血红素释放和细胞摄取被认为在HBOCs的整体毒性中起重要作用。
我们研究了四种不同HBOCs的不同氧化还原状态,即亚铁(Fe)、铁(Fe)和高铁(Fe)对心肌细胞完整性和线粒体呼吸的影响。本研究中使用的HBOC配方是两种源自人类和两种源自牛的分子。我们通过测量复合物I、复合物II-III和复合物IV的酶活性,分别分析了这些形式对细胞和亚细胞的影响,包括线粒体电子传递链(ETC)复合物。
这些HBOCs的亚铁和铁形式通常诱导人心肌细胞(AC16)释放的乳酸脱氢酶(LDH)最少。同时,通过LDH水平测量,所有HBOCs的更高氧化态即高铁形式产生了大量细胞损伤。我们研究了这些HBOCs氧化还原形式的影响及其损害培养的AC16细胞生物能量功能的能力。HBOCs的亚铁形式未导致线粒体ETC功能出现可测量的损害,而所有HBOCs的无功能铁形式在那些心脏细胞系中导致复合物IV活性显著丧失,但未导致复合物I或II-III活性丧失。另一方面,HBOCs的高铁形式使复合物I、II-III和IV的活性完全减弱。
本研究首次调查了不同化学修饰对HBOCs对心肌细胞线粒体复合物氧化还原活性的影响。一旦形成更高氧化态的高铁状态,就会引发心肌细胞的细胞和亚细胞变化。因此,我们关于HBOC氧化还原状态对线粒体功能影响的研究结果可能为未来替代分子实体的设计提供参考,以确保安全性并将毒性降至最低。