Suppr超能文献

基于对23项队列研究的系统评价和荟萃分析,建立并验证肺癌肺切除术后幸存者咳嗽预测模型

Establishment and validation of a cough prediction model for lung cancer survivors after pulmonary resection based on a systematic review and meta-analysis of 23 cohort studies.

作者信息

Feng Fu-Kai, Gao Zi-Xiu, Dai Zhang-Yi, Wu Yong-Ming, Shi Xue-Jun

机构信息

Department of Thoracic Surgery, Tianjin Medical University Baodi Hospital, Tianjin, China.

Department of Thoracic Surgery, West China hospital, Sichuan University, Chengdu, China.

出版信息

J Thorac Dis. 2025 Aug 31;17(8):5597-5609. doi: 10.21037/jtd-2025-572. Epub 2025 Aug 25.

Abstract

BACKGROUND

Postoperative cough (POC) is a common complication following pulmonary resection, with an incidence of 25-50%. However, it often receives insufficient attention from clinicians. This study aimed to systematically identify the key risk factors associated with POC in lung cancer survivors and to develop and validate a predictive model to assess the likelihood of POC following pulmonary resection.

METHODS

A systematic review and meta-analysis were conducted by searching PubMed, Embase, Cochrane Library, Web of Science, WANFANG DATA, and CNKI to identify relevant risk factors for POC. Additionally, a cohort of 5,570 patients who underwent pulmonary resection was used to develop and validate the predictive model. Statistically significant independent variables from the meta-analysis were incorporated into the model, with risk factors weighted based on their pooled odds ratios (ORs) and β-coefficients. Model performance was evaluated using the area under the curve (AUC), calibration curves, and decision curve analysis (DCA).

RESULTS

The meta-analysis included 23 cohorts with 5,360 patients, of whom 33.8% experienced POC. Significant risk factors identified were age ≥60 years, body mass index (BMI) <24 kg/m, preoperative cough, right lung surgery, lobectomy, subcarinal and peritracheal lymph node dissection, postoperative acid reflux, and preoperative respiratory training. The predictive model demonstrated robust performance, with AUCs of 0.772 [95% confidence interval (CI): 0.757-0.786] in the training cohort and 0.782 (95% CI: 0.761-0.803) in the validation cohort. Calibration curves showed high accuracy, and DCA confirmed clinical utility across a threshold range of 0 to 0.8.

CONCLUSIONS

This study provides a comprehensive, evidence-based predictive model for identifying lung cancer survivors at high risk of POC, offering valuable insights into its risk factors.

摘要

背景

术后咳嗽(POC)是肺切除术后常见的并发症,发生率为25%-50%。然而,它往往未得到临床医生的充分关注。本研究旨在系统地确定肺癌幸存者中与POC相关的关键危险因素,并开发和验证一个预测模型,以评估肺切除术后发生POC的可能性。

方法

通过检索PubMed、Embase、Cochrane图书馆、Web of Science、万方数据和中国知网进行系统评价和荟萃分析,以确定POC的相关危险因素。此外,纳入5570例行肺切除术的患者队列来开发和验证预测模型。将荟萃分析中有统计学意义的自变量纳入模型,根据其合并比值比(OR)和β系数对危险因素进行加权。使用曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)评估模型性能。

结果

荟萃分析纳入了23个队列中的5360例患者,其中33.8%发生了POC。确定的显著危险因素包括年龄≥60岁、体重指数(BMI)<24 kg/m²、术前咳嗽、右肺手术、肺叶切除术、隆突下和气管周围淋巴结清扫、术后胃酸反流以及术前呼吸训练。预测模型表现出强大的性能,训练队列中的AUC为0.772[95%置信区间(CI):0.757-0.786],验证队列中的AUC为0.782(95%CI:0.761-0.803)。校准曲线显示出高准确性,DCA证实了在0至0.8的阈值范围内的临床实用性。

结论

本研究提供了一个全面的、基于证据的预测模型,用于识别POC高危的肺癌幸存者,为其危险因素提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b10/12433025/f66313f1cdee/jtd-17-08-5597-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验