Belasri A, Tahiri F, Douass O, Inostroza-Pino N, Belmouden M, Bahmann H, Mogren Al-Mogren M, Senent M L, Dalbouha S
Laboratory of Organic and Physical Chemistry, Research Team: Molecular Modeling, Materials, and Environment, Department of Chemistry, Faculty of Sciences Agadir, Ibn Zohr University, Agadir, Morocco, B.P. 8106, Morocco.
Optics, Material and Systems Team, , Faculty of Sciences, Abdelmalek Essâadi University, B.P. 2121, M'Hannech II, 93030 Tétouan, Morocco.
Open Res Eur. 2025 Sep 11;5:3. doi: 10.12688/openreseurope.18925.3. eCollection 2025.
The objective of this study is to explore the potential of oxazole (C H NO), a fascinating heterocyclic compound naturally present, which is a potential ligand in the construction of Metal-Organic Frameworks (MOFs) for the selective capture of CO in a nitrogen-rich atmosphere, using both molecular and solid-state simulation techniques.
This study investigates the equilibrium structures and binding energies of van der Waals aggregates formed by an oxazole molecule with nonpolar molecules such as CO and N , considering both two-body systems (oxazole-CO and oxazole-N ) and three-body systems (oxazole-CO -N and oxazole-CO /N -Au /Cu /Zn O ). Molecular computations for these systems are conducted using ab initio calculations at the MP2/aug-cc-pVXZ level of theory, where X = (D, T). Additionally, solid-state simulations analyze the adsorption behaviors and energies of oxazole-CO and oxazole-N on metallic surfaces:Au, Cu and ZnO(111) through Monte Carlo methods.
We find that the oxazole exhibits more adsorption selectivity for CO than for N . Adding a second gas to the most stable complexes, oxazole@CO and oxazole@N , the oxazole capture ability does not vary. On the contrary, it strengthens the adsorption energy of three-body complexes compared to two-body complexes. The addition of metallic clusters (Au , Cu , Zn O ) and metallic surfaces (Au, Cu, ZnO) enhances the adsorption capacity, where Cu is particularly efficient. Both ZnO and Cu surfaces offer significant adsorption advantages while remaining economically feasible.
This study demonstrates that oxazole exhibits a strong selectivity for CO over N , with the addition of metallic clusters and surfaces significantly enhancing its adsorption capacity. These findings highlight the potential of oxazole-based materials for effective gas capture and separation, with positive implications for environmental sustainability.
本研究的目的是利用分子和固态模拟技术,探索恶唑(C₃H₃NO)这种天然存在的迷人杂环化合物的潜力,它是构建用于在富氮气氛中选择性捕获CO₂的金属有机框架(MOF)的潜在配体。
本研究考虑双体系统(恶唑-CO₂和恶唑-N₂)和三体系统(恶唑-CO₂-N₂以及恶唑-CO₂/N₂-Au₃/Cu₃/ZnO),研究恶唑分子与CO₂和N₂等非极性分子形成的范德华聚集体的平衡结构和结合能。这些系统的分子计算使用理论水平为MP2/aug-cc-pVXZ(其中X = (D,T))的从头算。此外,固态模拟通过蒙特卡罗方法分析恶唑-CO₂和恶唑-N₂在金属表面Au、Cu和ZnO(111)上的吸附行为和能量。
我们发现恶唑对CO₂的吸附选择性高于对N₂的吸附选择性。向最稳定的配合物恶唑@CO₂和恶唑@N₂中添加第二种气体时,恶唑的捕获能力不变。相反,与双体配合物相比,它增强了三体配合物的吸附能。添加金属簇(Au₃、Cu₃、ZnO)和金属表面(Au、Cu、ZnO)提高了吸附容量,其中Cu₃特别有效。ZnO和Cu表面都具有显著的吸附优势,同时在经济上仍然可行。
本研究表明恶唑对CO₂的选择性强于对N₂的选择性,添加金属簇和表面显著提高了其吸附容量。这些发现突出了基于恶唑的材料在有效气体捕获和分离方面的潜力,对环境可持续性具有积极意义。