Suppr超能文献

通过条形码集成和研究电子数据捕获增强临床数据管理:可扩展且适应性强的实施研究

Enhancing Clinical Data Management Through Barcode Integration and Research Electronic Data Capture: Scalable and Adaptable Implementation Study.

作者信息

Zhang Rendong, Chiron Sophie, Tyree Regina, Carson Kate, Raber Larry, Ramadass Karthik, Gao Chenyu, Kim Michael E, Zuo Lianrui, Li Yike, Wan Zhiyu, Harris Paul A, Liu Qi, Lau Ken S, Coburn Lori A, Wilson Keith T, Huo Yuankai, Landman Bennett A, Bao Shunxing

机构信息

Department of Electrical and Computer Engineering, School of Engineering, Vanderbilt University, PMB 351824, 2301 Vanderbilt Place, Nashville, TN, 37235-1824, United States, 1 6153222338.

Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States.

出版信息

JMIR Form Res. 2025 Sep 12;9:e70016. doi: 10.2196/70016.

Abstract

BACKGROUND

Effective data management is crucial in clinical studies for precise tracking, secure storage, and reliable analysis of samples. Traditional systems often encounter challenges like barcode recognition errors, inadequate data details, and diminished performance under heavy workloads.

OBJECTIVE

This paper aims to enhance clinical data management by improving barcode robustness, increasing data granularity, and boosting system throughput. These improvements address key challenges in barcode informatics systems, as highlighted in previous studies, to better support real clinical applications. In addition, we aim to validate the design criteria on various gastrointestinal-related studies, ensuring it can be easily integrated into other clinical data management workflows.

METHODS

We evaluated the robustness of various barcode technologies under significant blurring conditions, implemented a dynamic organ-specific archive in the REDCap (Research Electronic Data Capture) database for various clinical study data collection criteria, and used Docker to containerize the informatics software for different studies. In addition, we proposed a local cache system to reduce interaction times with REDCap for large-scale data records. Experimental setups include assessing barcode recognition accuracy under various levels of image blurring, showcasing different study types managed with the organ-specific archive, and measuring system throughput and response times with and without the proposed local cache system.

RESULTS

Our findings demonstrate that the DataMatrix barcode exhibits superior resilience, maintaining high recognition accuracy under blurred conditions. The dynamic organ-specific archive in REDCap enabled precise tracking of sample origins, improving data granularity. Docker containerization streamlines software deployment and ensures consistency across studies. The local cache system significantly reduces interaction times with REDCap, decreasing operating time by nearly eightfold compared to the naïve strategy when handling large patient datasets.

CONCLUSIONS

The proposed enhancements significantly improve barcode robustness, data granularity, and system throughput in the informatics system, addressing key limitations identified in previous studies. These optimizations ensure efficient data management and robust support for diverse clinical research needs.

摘要

背景

有效的数据管理在临床研究中对于精确跟踪、安全存储和可靠分析样本至关重要。传统系统经常面临诸如条形码识别错误、数据细节不足以及在高工作负载下性能下降等挑战。

目的

本文旨在通过提高条形码鲁棒性、增加数据粒度和提升系统吞吐量来加强临床数据管理。这些改进解决了先前研究中强调的条形码信息系统的关键挑战,以更好地支持实际临床应用。此外,我们旨在验证各种胃肠道相关研究的设计标准,确保其能够轻松集成到其他临床数据管理工作流程中。

方法

我们评估了在严重模糊条件下各种条形码技术的鲁棒性,在REDCap(研究电子数据采集)数据库中针对各种临床研究数据收集标准实施了动态器官特定存档,并使用Docker为不同研究将信息学软件容器化。此外,我们提出了一种本地缓存系统,以减少与REDCap进行大规模数据记录交互的次数。实验设置包括评估在不同图像模糊程度下的条形码识别准确率,展示使用器官特定存档管理的不同研究类型,以及测量有无所提出的本地缓存系统时的系统吞吐量和响应时间。

结果

我们的研究结果表明,DataMatrix条形码具有卓越的弹性,在模糊条件下仍能保持较高的识别准确率。REDCap中的动态器官特定存档能够精确跟踪样本来源,提高了数据粒度。Docker容器化简化了软件部署,并确保了各研究之间的一致性。本地缓存系统显著减少了与REDCap的交互次数,在处理大型患者数据集时,与简单策略相比,运行时间减少了近八倍。

结论

所提出的改进措施显著提高了信息学系统中的条形码鲁棒性、数据粒度和系统吞吐量,解决了先前研究中确定的关键限制。这些优化确保了高效的数据管理,并为各种临床研究需求提供了有力支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bd4/12434633/cf82ca832427/formative-v9-e70016-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验