Suppr超能文献

综合多样性和网络分析揭示了微生物群落动态变化的驱动因素。

Integrated diversity and network analyses reveal drivers of microbiome dynamics.

作者信息

Guan Rui, Garrido-Oter Ruben

机构信息

Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.

Cluster of Excellence on Plant Sciences, Düsseldorf, Germany.

出版信息

mSystems. 2025 Sep 15:e0056425. doi: 10.1128/msystems.00564-25.

Abstract

UNLABELLED

Microbial communities are key components of ecosystems, where interactions among microbes drive biodiversity and productivity. An increased number of microbiome data sets are available, owing to advances in sequencing; however, standard analyses often focus on community composition, neglecting the complex interactions between co-occurring microbes. To address this, we developed a computational framework integrating compositional and co-occurrence network analyses. We applied this approach to extensive microbial amplicon data sets, focusing on plant microbiota, which typically exhibits high diversity and remains challenging to characterize due to the large number of low-abundance taxa. We show that identifying a subset of representative microbial taxa captures the overall community structure and increases the statistical power. From these taxa, we inferred a large-scale co-occurrence network and clustered microbes with co-varying abundances into units for diversity measurement. This approach not only reduces unexplained variance in diversity assessments but also captures the key microbe-microbe relationships that govern assembly patterns. Furthermore, we introduced a bootstrap- and permutation-based statistical approach to compare microbial networks from diverse conditions. Our method robustly distinguishes meaningful differences and pinpoints specific microbes and features driving those differences. These results highlight the importance of incorporating microbe-microbe interactions in microbiota studies, leading to more accurate and ecologically meaningful insights. Our framework, available as an R package ("mina"), enables researchers to identify condition-specific interactions network comparison and gain a deeper understanding of community ecology. With broad applicability beyond plant systems, this package provides a valuable tool for leveraging microbiome data across disciplines, from agriculture to ecosystem resilience and human health.

IMPORTANCE

Understanding microbiome dynamics requires capturing not only changes in microbial composition but also interactions between community members. Traditional approaches frequently overlook microbe-microbe interactions, limiting their ecological interpretation. Here, we introduce a novel computational framework that integrates compositional data with network-based analyses, significantly improving the detection of biologically meaningful patterns in community variation. By applying this framework to a large data set from the plant microbiota, we identify representative groups of interacting microbes driving differences across microhabitats and environmental conditions. Our analysis framework, implemented in an R package "mina," provides robust tools allowing researchers to assess statistical differences between microbial networks and detect condition-specific interactions. Broadly applicable to microbiome data sets, our framework is aimed at enabling advances in our understanding of microbial interactions within complex communities.

摘要

未标注

微生物群落是生态系统的关键组成部分,微生物之间的相互作用驱动着生物多样性和生产力。由于测序技术的进步,可获得的微生物组数据集数量有所增加;然而,标准分析通常侧重于群落组成,而忽略了同时存在的微生物之间的复杂相互作用。为了解决这个问题,我们开发了一个整合组成分析和共现网络分析的计算框架。我们将这种方法应用于大量微生物扩增子数据集,重点关注植物微生物群,其通常表现出高度的多样性,并且由于大量低丰度分类群的存在,对其进行表征仍然具有挑战性。我们表明,识别代表性微生物分类群的一个子集能够捕捉整体群落结构并提高统计功效。从这些分类群中,我们推断出一个大规模的共现网络,并将丰度共同变化的微生物聚类为用于多样性测量的单元。这种方法不仅减少了多样性评估中无法解释的方差,还捕捉到了控制群落组装模式的关键微生物 - 微生物关系。此外,我们引入了一种基于自助法和置换法的统计方法来比较不同条件下的微生物网络。我们的方法能够稳健地区分有意义的差异,并确定驱动这些差异的特定微生物和特征。这些结果凸显了在微生物群研究中纳入微生物 - 微生物相互作用的重要性,从而带来更准确且具有生态意义的见解。我们的框架以R包(“mina”)的形式提供,使研究人员能够识别特定条件下的相互作用、进行网络比较,并更深入地理解群落生态学。该包具有超越植物系统的广泛适用性,为跨学科利用微生物组数据提供了一个有价值的工具,从农业到生态系统恢复力以及人类健康等领域。

重要性

理解微生物组动态不仅需要捕捉微生物组成的变化,还需要捕捉群落成员之间的相互作用。传统方法经常忽略微生物 - 微生物相互作用,限制了它们的生态学解释。在这里,我们引入了一个新颖的计算框架,该框架将组成数据与基于网络的分析相结合,显著提高了对群落变异中有生物学意义模式的检测能力。通过将这个框架应用于来自植物微生物群的大数据集,我们识别出了驱动不同微生境和环境条件差异的相互作用微生物的代表性群体。我们在R包“mina”中实现的分析框架提供了强大的工具,使研究人员能够评估微生物网络之间的统计差异并检测特定条件下的相互作用。我们的框架广泛适用于微生物组数据集,旨在推动我们对复杂群落中微生物相互作用的理解取得进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验