Zhang Zhan Tong, Vaníček Jiří J L
Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
J Chem Theory Comput. 2025 Oct 14;21(19):9726-9735. doi: 10.1021/acs.jctc.5c01097. Epub 2025 Sep 15.
We present a practical, ab initio time-dependent method using Hagedorn wavepackets to efficiently simulate single vibronic level (SVL) fluorescence spectra of polyatomic molecules from arbitrary initial vibrational levels. We apply the method to compute SVL spectra of anthracene by performing wavepacket dynamics on a 66-dimensional harmonic potential energy surface constructed from density functional theory calculations. The Hagedorn approach captures both mode distortion (frequency changes) and mode mixing (Duschinsky rotation) within the harmonic approximation. We not only reproduce the previously reported simulation results for singly excited 12 and 1̅1̅ levels but are also able to compute SVL spectra from multiply excited levels in good agreement with experiments. Notably, all spectra were obtained from the same wavepacket trajectory without any additional propagation beyond what is required for the emission spectrum from the ground vibrational level of the electronically excited state.
我们提出了一种实用的、从头算的含时方法,该方法使用哈格多恩波包来有效地模拟多原子分子从任意初始振动态出发的单电子振动态(SVL)荧光光谱。我们将该方法应用于计算蒽的SVL光谱,通过在由密度泛函理论计算构建的66维谐振子势能面上进行波包动力学计算。哈格多恩方法在谐振近似下捕捉了模式畸变(频率变化)和模式混合(杜什金斯基转动)。我们不仅重现了先前报道的单重激发12和1̅1̅能级的模拟结果,还能够计算多重激发能级的SVL光谱,且与实验结果吻合良好。值得注意的是,所有光谱均从同一波包轨迹获得,除了电子激发态基振动态发射光谱所需的传播之外,无需任何额外的传播。