Suppr超能文献

使用自我管理的数字认知测试和血液生物标志物在初级保健中检测阿尔茨海默病。

Primary care detection of Alzheimer's disease using a self-administered digital cognitive test and blood biomarkers.

作者信息

Tideman Pontus, Karlsson Linda, Strandberg Olof, Calling Susanna, Smith Ruben, Midlöv Patrik, Verghese Philip B, Braunstein Joel B, Mattsson-Carlgren Niklas, Stomrud Erik, Palmqvist Sebastian, Hansson Oskar

机构信息

Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.

Memory Clinic, Skåne University Hospital, Malmö, Sweden.

出版信息

Nat Med. 2025 Sep 15. doi: 10.1038/s41591-025-03965-4.

Abstract

After the clinical implementation of amyloid-β-targeting therapies for people with cognitive impairment due to Alzheimer's disease (AD), there is an urgent need to efficiently identify this patient population in primary care. Therefore, we created a brief and self-administered digital cognitive test battery (BioCog). Based on its sub-scores, a logistic regression model was developed in a secondary care cohort (n = 223) and then evaluated in an independent primary care cohort comprising 19 primary care centers (n = 403). In primary care, BioCog had an accuracy of 85% when using a single cutoff to define cognitive impairment, which was significantly better than the assessment of primary care physicians (accuracy 73%). The accuracy increased to 90% when using a two-cutoff approach. BioCog had significantly higher accuracy than standard paper-and-pencil tests (that is, Mini-Mental State Examination, Montreal Cognitive Assessment, Mini-Cog) and another digital cognitive test. Furthermore, BioCog combined with a blood test could detect clinical, biomarker-verified AD with an accuracy of 90% (one cutoff), significantly better than standard-of-care (accuracy 70%) or when using the blood test alone (accuracy 80%). In conclusion, this proof-of-concept study shows that a brief, self-administered digital cognitive test battery can detect cognitive impairment and, when combined with a blood test, accurately identify clinical AD in primary care.

摘要

在针对阿尔茨海默病(AD)所致认知障碍患者的β-淀粉样蛋白靶向治疗临床应用后,迫切需要在初级保健中高效识别这一患者群体。因此,我们创建了一个简短的、可自行完成的数字认知测试组合(BioCog)。基于其分项得分,在一个二级保健队列(n = 223)中开发了一个逻辑回归模型,然后在一个由19个初级保健中心组成的独立初级保健队列(n = 403)中进行评估。在初级保健中,当使用单一临界值定义认知障碍时,BioCog的准确率为85%,显著高于初级保健医生的评估(准确率73%)。使用双临界值方法时,准确率提高到90%。BioCog的准确率显著高于标准纸笔测试(即简易精神状态检查表、蒙特利尔认知评估量表、简易认知筛查量表)和另一项数字认知测试。此外,BioCog与血液检测相结合,能够以90%的准确率(一个临界值)检测出经生物标志物验证的临床AD,显著优于标准治疗方法(准确率70%)或单独使用血液检测时(准确率80%)。总之,这项概念验证研究表明,一个简短的、可自行完成的数字认知测试组合能够检测出认知障碍,并且与血液检测相结合时,能够在初级保健中准确识别临床AD。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验