Mohammadzadeh Vahid, Su Erica, Besharati Sajad, Liu Abraham, Law Simon K, Coleman Anne L, Caprioli Joseph, Weiss Robert E, Nouri-Mahdavi Kouros
Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA.
Transl Vis Sci Technol. 2025 Sep 2;14(9):24. doi: 10.1167/tvst.14.9.24.
Individual visual field (VF) sensitivities become unreliable at threshold sensitivities of 19 dB or less, limiting glaucoma monitoring. We evaluated longitudinal variability of central 10° VF measurements based on baseline sensitivity using a Bayesian hierarchical model.
We included 124 glaucoma patients (124 eyes) with central or moderate-to-advanced VF damage, more than 2 years follow-up, and more than 4 central 10-2 VF tests. A Bayesian linear model estimated pointwise change rates, compared with simple linear regression (SLR). Simulations modeled average (-0.21 dB/year) and benchmark (-0.5 dB/year) slopes with residual standard deviations (SD) of 2, 4, 7, or 10 dB. Outcomes included pointwise residual SDs and proportions of significant slopes in cohort and simulations.
The average baseline 10-2 VF mean deviation, follow-up time, and median VF tests were 8.4 ± 5.4 dB, 4.6 ± 0.8 years, and 9 VF tests (range, 4-12 VF tests), respectively. The mean global slopes for Bayesian and SLR models were -0.21 and -0.36 dB/year. Residual SDs were markedly higher when baseline threshold sensitivities was 5 to 20 dB compared with 25 dB or greater. The Bayesian model identified more significant negative slopes, particularly at points with residual SD of less than 4 dB, relative to SLR.
When baseline pointwise sensitivity is 5 to 20 dB, residual variability is very large, substantially reducing the ability to detect glaucoma progression.
Visual field locations with sensitivity near or less than 20 dB demonstrate markedly greater variability over time; thus, excluding these points from visual field algorithms or analytical models could improve efficiency in detecting perimetric progression.
在阈值敏感度为19 dB或更低时,个体视野(VF)敏感度变得不可靠,这限制了青光眼的监测。我们使用贝叶斯分层模型,基于基线敏感度评估了中央10°视野测量的纵向变异性。
我们纳入了124例青光眼患者(124只眼),这些患者存在中央或中度至重度视野损害,随访时间超过2年,且进行了4次以上中央10-2视野测试。与简单线性回归(SLR)相比,贝叶斯线性模型估计逐点变化率。模拟以平均(-0.21 dB/年)和基准(-0.5 dB/年)斜率建模,残差标准差(SD)为2、4、7或10 dB。结果包括队列和模拟中的逐点残差标准差以及显著斜率的比例。
平均基线10-2视野平均偏差、随访时间和视野测试中位数分别为8.4±5.4 dB、4.6±0.8年和9次视野测试(范围为4-12次视野测试)。贝叶斯模型和SLR模型的平均总体斜率分别为-0.21 dB/年和-0.36 dB/年。与25 dB或更高相比,当基线阈值敏感度为5至20 dB时,残差标准差明显更高。相对于SLR,贝叶斯模型识别出更多显著的负斜率,特别是在残差标准差小于4 dB的点。
当基线逐点敏感度为5至20 dB时,残差变异性非常大,大大降低了检测青光眼进展的能力。
敏感度接近或低于20 dB的视野位置随时间显示出明显更大的变异性;因此,从视野算法或分析模型中排除这些点可以提高检测视野进展的效率。