Suppr超能文献

利用社会空间动态提升大流行应对能力:来自印度科泽科德的证据

Harnessing Socio-Spatial Dynamics for Pandemic Resilience: Evidence from Kozhikode, India.

作者信息

Abdulla Shahana Usman, Puthuvayi Bimal

机构信息

Department of Architecture & Planning, National Institute of Technology Calicut, Kerala, India.

出版信息

One Health. 2025 Apr 26;20:101052. doi: 10.1016/j.onehlt.2025.101052. eCollection 2025 Jun.

Abstract

Despite strict containment measures in India, COVID-19 cases significantly increased between 2020 and 2022, partly due to mass containment strategies based on administrative boundaries, disrupting infected and uninfected populations. This study addresses the gap in research on socio-spatial factors influencing COVID-19 infection by using micro-level data from urban wards of an Indian City, aiming to identify key socio-economic and spatial determinants of disease spread. Based on the data collected from 1194 individuals across 75 wards of Kozhikode City, the study employed a binary logistic regression model to examine how these variables affect COVID-19 test outcomes and a hotspot analysis to analyze the spatial dynamics of infection. The presence of comorbidities (Odds Ratio = 8.61) and the stringency index (Odds Ratio = 1.63) were the most significant factors associated with increased COVID-19 infection risk, highlighting the vulnerability of individuals with chronic health conditions and the complex relationship between government restrictions and case numbers. Residential density, essential job status, proximity to public amenities, and frequency of trips made were also strongly linked to higher infection rates, underscoring the role of socio-spatial factors in virus transmission. Hotspot analysis revealed spatial clustering of infections in urban cores, reinforcing the spatial nature of disease spread and the need for localized, data-driven interventions. The model achieved 86.5 % accuracy, demonstrating its effectiveness in explaining COVID-19 infection using socio-spatial parameters. The findings form a foundation for targeted public health interventions and data-driven strategies to manage infection spread, emphasizing the role of people, activities, and spaces in transmission dynamics.

摘要

尽管印度采取了严格的防控措施,但2020年至2022年期间,新冠病毒病例仍显著增加,部分原因是基于行政区划的大规模防控策略扰乱了感染人群和未感染人群。本研究利用印度某城市市区的微观数据,填补了关于影响新冠病毒感染的社会空间因素研究的空白,旨在确定疾病传播的关键社会经济和空间决定因素。基于从科泽科德市75个选区的1194个人收集的数据,该研究采用二元逻辑回归模型来检验这些变量如何影响新冠病毒检测结果,并进行热点分析以分析感染的空间动态。合并症的存在(优势比 = 8.61)和严格指数(优势比 = 1.63)是与新冠病毒感染风险增加相关的最显著因素,凸显了患有慢性健康问题的个体的脆弱性以及政府限制与病例数之间的复杂关系。居住密度、基本工作状态、与公共设施的距离以及出行频率也与较高的感染率密切相关,强调了社会空间因素在病毒传播中的作用。热点分析揭示了城市核心区域感染的空间聚集,强化了疾病传播的空间特性以及采取本地化、数据驱动干预措施的必要性。该模型的准确率达到86.5%,证明了其在使用社会空间参数解释新冠病毒感染方面的有效性。这些发现为有针对性的公共卫生干预措施和管理感染传播的数据驱动策略奠定了基础,强调了人、活动和空间在传播动态中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6560/12434689/ecc21ea75a22/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验