Suppr超能文献

在斑马鱼低磷酸酯酶症模型中,人工智能辅助的表型分析能够早期且精确地检测骨骼改变。

AI-assisted phenotyping in a zebrafish hypophosphatasia model enables early and precise detection of skeletal alterations.

作者信息

Hark Regina, Zürlein Simon, Nguyen Viet T, Gust Gunther, Hekel Lukas, Liedtke Daniel

机构信息

Institute of Human Genetics, Am Hubland, Biocenter, Julius-Maximilians-University Würzburg, 97074, Würzburg, Germany.

Chair for Enterprise Artificial Intelligence, Center for Artificial Intelligence and Data Science (CAIDAS), Sanderring 2, Würzburg, Germany.

出版信息

Sci Rep. 2025 Sep 17;15(1):32578. doi: 10.1038/s41598-025-19199-w.

Abstract

Hypophosphatasia (HPP) is a rare genetic disorder mainly affecting bone and tooth mineralization in patients due to ALPL gene mutations. Understanding genotype-phenotype correlations in HPP remains challenging due to different severities and the disease's heterogeneity. To address this, we established a novel zebrafish animal model (alpl), which mimics severe HPP disease forms. To bypass limitations in human-based phenotypic classification of skeletal alterations in this transgenic line, we developed and trained an artificial intelligence (AI) model capable of image-based classification with 68% accuracy-an improvement of 79% over manual classification. Our AI model could successfully identify early developmental alterations independent of altered image magnification, coloration quality and executing scientists. Using attention rollout, we further visualized AI decision-making, revealing not only expected focus on early bone structures but also unexpected emphasis on the otoliths-parts of the zebrafish's hearing and balancing organ. We see applications of our AI system in analyzing other skeletal disorder models as well as in providing an unbiased, high-throughput phenotypic rescue quantification assay for potential drug screening applications in zebrafish larvae. Overall, our findings establish an integrated platform for studying HPP and open new avenues for AI-assisted phenotyping and therapeutic discovery.

摘要

低磷酸酯酶症(HPP)是一种罕见的遗传性疾病,主要由于ALPL基因突变影响患者的骨骼和牙齿矿化。由于疾病严重程度不同以及具有异质性,了解HPP的基因型-表型相关性仍然具有挑战性。为了解决这个问题,我们建立了一种新型斑马鱼动物模型(alpl),它模拟了严重的HPP疾病形式。为了克服基于人类的该转基因系骨骼改变表型分类的局限性,我们开发并训练了一种人工智能(AI)模型,该模型能够基于图像进行分类,准确率达68%,比人工分类提高了79%。我们的AI模型能够成功识别早期发育改变,且不受图像放大倍数、着色质量和执行实验的科学家的影响。通过注意力展开,我们进一步可视化了AI的决策过程,不仅揭示了对早期骨骼结构的预期关注,还意外地发现对耳石(斑马鱼听觉和平衡器官的一部分)的重视。我们认为我们的AI系统可应用于分析其他骨骼疾病模型,以及为斑马鱼幼虫潜在药物筛选应用提供无偏差、高通量的表型拯救定量分析。总体而言,我们的研究结果建立了一个研究HPP的综合平台,并为AI辅助表型分析和治疗发现开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8be7/12443964/4ac032c06f1c/41598_2025_19199_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验