Hark Regina, Zürlein Simon, Nguyen Viet T, Gust Gunther, Hekel Lukas, Liedtke Daniel
Institute of Human Genetics, Am Hubland, Biocenter, Julius-Maximilians-University Würzburg, 97074, Würzburg, Germany.
Chair for Enterprise Artificial Intelligence, Center for Artificial Intelligence and Data Science (CAIDAS), Sanderring 2, Würzburg, Germany.
Sci Rep. 2025 Sep 17;15(1):32578. doi: 10.1038/s41598-025-19199-w.
Hypophosphatasia (HPP) is a rare genetic disorder mainly affecting bone and tooth mineralization in patients due to ALPL gene mutations. Understanding genotype-phenotype correlations in HPP remains challenging due to different severities and the disease's heterogeneity. To address this, we established a novel zebrafish animal model (alpl), which mimics severe HPP disease forms. To bypass limitations in human-based phenotypic classification of skeletal alterations in this transgenic line, we developed and trained an artificial intelligence (AI) model capable of image-based classification with 68% accuracy-an improvement of 79% over manual classification. Our AI model could successfully identify early developmental alterations independent of altered image magnification, coloration quality and executing scientists. Using attention rollout, we further visualized AI decision-making, revealing not only expected focus on early bone structures but also unexpected emphasis on the otoliths-parts of the zebrafish's hearing and balancing organ. We see applications of our AI system in analyzing other skeletal disorder models as well as in providing an unbiased, high-throughput phenotypic rescue quantification assay for potential drug screening applications in zebrafish larvae. Overall, our findings establish an integrated platform for studying HPP and open new avenues for AI-assisted phenotyping and therapeutic discovery.
低磷酸酯酶症(HPP)是一种罕见的遗传性疾病,主要由于ALPL基因突变影响患者的骨骼和牙齿矿化。由于疾病严重程度不同以及具有异质性,了解HPP的基因型-表型相关性仍然具有挑战性。为了解决这个问题,我们建立了一种新型斑马鱼动物模型(alpl),它模拟了严重的HPP疾病形式。为了克服基于人类的该转基因系骨骼改变表型分类的局限性,我们开发并训练了一种人工智能(AI)模型,该模型能够基于图像进行分类,准确率达68%,比人工分类提高了79%。我们的AI模型能够成功识别早期发育改变,且不受图像放大倍数、着色质量和执行实验的科学家的影响。通过注意力展开,我们进一步可视化了AI的决策过程,不仅揭示了对早期骨骼结构的预期关注,还意外地发现对耳石(斑马鱼听觉和平衡器官的一部分)的重视。我们认为我们的AI系统可应用于分析其他骨骼疾病模型,以及为斑马鱼幼虫潜在药物筛选应用提供无偏差、高通量的表型拯救定量分析。总体而言,我们的研究结果建立了一个研究HPP的综合平台,并为AI辅助表型分析和治疗发现开辟了新途径。