Suppr超能文献

强化传统标准:一种基于CT的深度学习影像组学列线图用于肝移植后肝细胞癌早期复发风险分层

Augmenting conventional criteria: a CT-based deep learning radiomics nomogram for early recurrence risk stratification in hepatocellular carcinoma after liver transplantation.

作者信息

Wu Ziqian, Liu Danyang, Ouyang Siyu, Hu Jingyi, Ding Jie, Guo Qiu, Gao Jidong, Luo Jiawen, Ren Ke

机构信息

Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen radiological Control Center, Xiamen, China.

Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.

出版信息

Insights Imaging. 2025 Sep 17;16(1):194. doi: 10.1186/s13244-025-02082-7.

Abstract

BACKGROUND

We developed a deep learning radiomics nomogram (DLRN) using CT scans to improve clinical decision-making and risk stratification for early recurrence of hepatocellular carcinoma (HCC) after transplantation, which typically has a poor prognosis.

MATERIALS AND METHODS

In this two-center study, 245 HCC patients who had contrast-enhanced CT before liver transplantation were split into a training set (n = 184) and a validation set (n = 61). We extracted radiomics and deep learning features from tumor and peritumor areas on preoperative CT images. The DLRN was created by combining these features with significant clinical variables using multivariate logistic regression. Its performance was validated against four traditional risk criteria to assess its additional value.

RESULTS

The DLRN model showed strong predictive accuracy for early HCC recurrence post-transplant, with AUCs of 0.884 and 0.829 in training and validation groups. High DLRN scores significantly increased relapse risk by 16.370 times (95% CI: 7.100-31.690; p  < 0.001). Combining DLRN with Metro-Ticket 2.0 criteria yielded the best prediction (AUC: training/validation: 0.936/0.863).

CONCLUSION

The CT-based DLRN offers a non-invasive method for predicting early recurrence following liver transplantation in patients with HCC. Furthermore, it provides substantial additional predictive value with traditional prognostic scoring systems.

CRITICAL RELEVANCE STATEMENT

AI-driven predictive models utilizing preoperative CT imaging enable accurate identification of early HCC recurrence risk following liver transplantation, facilitating risk-stratified surveillance protocols and optimized post-transplant management.

KEY POINTS

A CT-based DLRN for predicting early HCC recurrence post-transplant was developed. The DLRN predicted recurrence with high accuracy (AUC: 0.829) and 16.370-fold increased recurrence risk. Combining DLRN with Metro-Ticket 2.0 criteria achieved optimal prediction (AUC: 0.863).

摘要

背景

我们利用CT扫描开发了一种深度学习放射组学列线图(DLRN),以改善肝细胞癌(HCC)移植后早期复发的临床决策和风险分层,HCC移植后预后通常较差。

材料与方法

在这项双中心研究中,将245例肝移植前接受增强CT检查的HCC患者分为训练集(n = 184)和验证集(n = 61)。我们从术前CT图像上的肿瘤及瘤周区域提取了放射组学和深度学习特征。通过多变量逻辑回归将这些特征与重要临床变量相结合创建了DLRN。根据四个传统风险标准验证其性能,以评估其附加价值。

结果

DLRN模型对移植后HCC早期复发显示出强大的预测准确性,训练组和验证组的AUC分别为0.884和0.829。高DLRN评分显著增加复发风险16.370倍(95%CI:7.100 - 31.690;p < 0.001)。将DLRN与Metro-Ticket 2.0标准相结合产生了最佳预测效果(AUC:训练组/验证组:0.936/0.863)。

结论

基于CT的DLRN为预测HCC患者肝移植后的早期复发提供了一种非侵入性方法。此外,它与传统预后评分系统相比提供了大量附加预测价值。

关键相关性声明

利用术前CT成像的人工智能驱动预测模型能够准确识别肝移植后HCC早期复发风险,有助于制定风险分层监测方案和优化移植后管理。

要点

开发了一种基于CT的DLRN用于预测移植后HCC早期复发。DLRN预测复发的准确性高(AUC:0.829),复发风险增加16.370倍。将DLRN与Metro-Ticket 2.0标准相结合实现了最佳预测(AUC:0.863)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验